Skip to main content
Log in

Laboratory Determination of the Carbon Kinetic Isotope Effects (KIEs) for Reactions of Methyl Halides with Various Nucleophiles in Solution

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Large carbon kinetic isotope effects (KIEs) were measured for reactions of methyl bromide (MeBr), methyl chloride (MeCl), and methyl iodide (MeI) with various nucleophiles at 287 and 306 K in aqueous solutions. Rates of reaction of MeBr and MeI with H2O (neutral hydrolysis) or Cl (halide substitution) were consistent with previous measurements. Hydrolysis rates increased with increasing temperature or pH (base hydrolysis). KIEs for hydrolysis were 51 ± 6%0 for MeBr and 38 ± 8%0 for MeI. Rates of halide substitution increased with increasing temperature and greater reactivity of the attacking nucleophile, with the fastest reaction being that of MeI with Br. KIEs for halide substitution were independent of temperature but varied with the reactant methyl halide and the attacking nucleophile. KIEs were similar for MeBr substitution with Cl and MeCl substitution with Br (57 ± 5 and 60 ± 9%0, respectively). The KIE for halide exchange of MeI was lower overall (33 ± 8%0) and was greater for substitution with Br (46 ± 6%0) than with Cl (29 ± 6%0).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bill, M., Rhew, R. C., Weiss, R. F., and Goldstein, A. H., 2002a: Carbon isotope ratios of methyl bromide and methyl chloride emitted from a coastal salt marsh, Geophys. Res. Lett. 29(4), doi:10.1029/2001GL012946

  • Bill, M., Miller, L. G., and Goldstein, A. H., 2002b: Carbon isotope fractionation of methyl bromide during agricultural soil fumigations, Biogeochemistry 60, 181–190.

    Article  Google Scholar 

  • Bill, M., Conrad, M. E., and Goldstein, A. H., 2004: Stable carbon isotope composition of atmospheric methyl bromide, Geophys. Res. Lett. 31, L04109, doi:10.1029/2003GL018639

    Article  Google Scholar 

  • Blake, N. J., Blake D. R., Sive, B. B., Chen, T.-Y., Rowland, F. S., Collins Jr., J. E., Sachse, G. W., and Anderson, B. E., 1996: Biomass burning emissions and vertical distribution of atmospheric methyl halides and other reduced carbon gases in the South Atlantic region, J. Geophys. Res. 101, 24,151–24,164.

    Google Scholar 

  • Connell, T. L., Joye, S. B., Miller, L. G., and Oremland, R. S., 1997: Bacterial oxidation of methyl bromide in Mono Lake, California, Environ. Sci. and Technol. 31, 1489–1495.

    Google Scholar 

  • Elliott, S. and Rowland, F. S., 1993: Nucleophilic substitution rates and solubilities for methyl halides in seawater, Geophys. Res. Lett. 20, 1043–1046.

    Google Scholar 

  • Elliott, S. M. and Rowland, F. S., 1995: Methyl halide hydrolysis rates in natural waters, J. Atmos. Chem. 20, 229–236.

    Article  Google Scholar 

  • Gentile, I. A., Ferraris, L., Crespi, S., and Belligno, A., 1989: The degradation of methyl bromide in some natural fresh waters. Influence of temperature, pH, and light, Pestic. Sci. 25, 261–272.

    Google Scholar 

  • Hamilton, J. T. G., McRoberts, W. C., Keppler, F., Kalin, R. M., and Harper, D. B., 2003: Chloride methylation by plant pectin: An efficient environmentally significant process, Science 301, 206–209.

    Google Scholar 

  • Harper, D. B., 1985: Halomethane from halide ion – a highly efficient fungal conversion of environmental significance, Nature 315, 55–57.

    Article  Google Scholar 

  • Jeffers, P. M. and Wolfe, N. L., 1996: On the degradation of methyl bromide in sea water, Geophys. Res. Lett. 23, 1773–1776.

    Article  Google Scholar 

  • Jeffers, P. M., Wolfe, N. L., and Nzengung, V., 1998: Green plants: A terrestrial sink for atmospheric CH3Br, Geophys. Res. Lett. 25, 43–46.

    Article  Google Scholar 

  • Kalin, R. M., Hamilton, J. T. G., Harper, D. B., Miller, L. G., Lamb, C., Kennedy, J. T., Downey, A., McCauley, S., and Goldstein, A. H., 2001: Continuous flow stable isotope methods for study of δ13C fractionation during halomethane production and degradation, Rapid Commun. Mass Spectrom. 15, 357–363.

    Article  Google Scholar 

  • Keppler, F., Harper, D. B., Röckmann, T., Moore, R. M., and Hamilton, J. T. G., 2005: New insight into the atmospheric chloromethane budget gained using stable carbon isotope ratios, Atmos. Chem. Phys. Discuss. 5, 3899–3919.

    Google Scholar 

  • Khalil, M. A. K. and Rasmussen, R. A., 1999: Atmospheric methyl chloride, Atmos. Environ. 33, 1305–1321.

    Google Scholar 

  • King, D. B. and Saltzman, E. S., 1997: Removal of methyl bromide in coastal seawater: Chemical and biological rates, J. Geophys. Res. 102, 18,715–18,721.

    Article  Google Scholar 

  • Komatsu, D. D., Tsunogai, U., Yamaguchi, J., and Nakagawa, F., 2005: A selective unsaturated hydrocarbon subtraction technique for stable carbon isotopic analysis of atmospheric methyl chloride, methyl bromide, and C2–C5 saturated hydrocarbons using continuous-flow isotope ratio mass spectrometry, Rapid Commun. Mass Spectrom. 19, 477–483.

    Article  Google Scholar 

  • Lovelock, J. E., 1975: Natural halocarbons in the air and the sea, Nature 256, 193–194.

    Article  Google Scholar 

  • Manley, S. L. and Dastoor, M. N., 1987: Methyl halide (CH3 X) production from the giant kelp, Macorcystis, and estimates of global CH3 X production by kelp, Limnol. Oceanogr. 32, 709–715.

    Google Scholar 

  • McCauley, S. E., Goldstein, A. H., and DePaulo, D. J., 1999: An isotopic approach for understanding the CH3Br budget of the atmosphere, Proc. Natl. Acad. Sci. 96, 10006–10009.

    Article  Google Scholar 

  • Miller, L. G., Connell, T. L., Guidetti, J. R., and Oremland, R. S., 1997: Bacterial oxidation of methyl bromide in fumigated agricultural soils, Appl. Environ. Microbiol. 63, 4346–4354.

    Google Scholar 

  • Miller, L. G., Kalin, R. M., McCauley, S. E., Hamilton, J. T. G., Harper, D. B., Millet, D. B., Oremland, R. S., and Goldstein, A. H., 2001: Large carbon isotope fractionation associated with oxidation of methyl halides by methylotrophic bacteria, Proc. Natl. Acad. Sci. 98, 5833–5837.

    Google Scholar 

  • Miller, L. G., Warner, K. L., Baesman, S. M., Oremland, R. S., McDonald, I. R., Radajewski, S., and Murrell, J. C., 2004: Degradation of methyl bromide and methyl chloride in soil microcosms: Use of stable C isotope fractionation and stable isotope probing to identify reactions and the responsible microorganisms, Geochim. Cosmochim. Acta 68, 3271–3283.

    Article  Google Scholar 

  • Moelwyn-Hughes, E. A., 1938: The hydrolysis of methyl halides, Proc. Roy. Soc. A 164, 295–306.

    Google Scholar 

  • Montzka, S. A. et al., 2003: Controlled substances and other source gases. In Scientific Assessment of Ozone Depletion: 2002, World Meteorol. Org, Chapter 1: pp. 1.1 –1.83.

  • Moore, R. M. and Zafiriou, O. C., 1994: Photochemical production of methyl iodide in seawater, J. Geophys. Res. 99, 16415–16420.

    Google Scholar 

  • Moore, R. M., Groszko, W., and Niven, S. J., 1996: Ocean-atmosphere exchange of methyl chloride: Results from NW Atlantic and Pacific Ocean studies, J. Geophys. Res. 101, 28,529-28,538.

    Google Scholar 

  • Oremland, R. S., Miller, L. G., Culbertson, C. W., Connell, T. L., and Jahnke, L., 1994: Degradation of methyl bromide by methanotrophic bacteria in cell suspensions and soils, Appl. Environ. Microbiol. 60, 3640–3646.

    Google Scholar 

  • Rasmussen, R. A., Khalil, M. A. K., Gunawardena, R., and Hoyt, S. D., 1982: Atmospheric methyl iodide (CH3I), J. Geophys. Res. 87, 3086–3090.

    Article  Google Scholar 

  • Redeker, K. R., Wang, N.-Y., Low, J. C., McMillan, A., Tyler, S. C., and Cicerone, R. J., 2000: Emissions of methyl halides and methane from rice paddies, Science 290, 966–969.

    Article  Google Scholar 

  • Rhew, R. C., Miller, B. R., and Weiss, R. F., 2000: Natural methyl bromide and methyl chloride emissions from coastal salt marshes, Nature 403, 292–295.

    Article  Google Scholar 

  • Rudolph, J., Lowe, D. C., Martin, R. J., and Clarkson, T. S., 1997: A novel method for compound specific determination of δ13C in volatile organic compounds at ppt levels in ambient air, Geophys. Res. Lett. 24, 659–662.

    Article  Google Scholar 

  • Shorter, J. H., Kolb, C. E., Crill, P. M., Kerwin, R. A., Talbot, R. W., Hines, M. E., and Harriss, R. C., 1995: Rapid degradation of atmospheric methyl bromide in soils, Nature 377, 717–719.

    Article  Google Scholar 

  • Swain, C. G. and Scott, C. B., 1953: Quantitative correlation of relative rates. Comparison of hydroxide ion with other nucleophilic reagents toward alkyl halides, esters, epoxides and acyl halides, J. Amer. Chem. Soc. 75, 141–147.

    Google Scholar 

  • Tait, V. K. and Moore, R. M., 1995: Methyl chloride (CH3Cl) production in phytoplankton cultures, Limnol. Oceanogr. 40, 189–195.

    Article  Google Scholar 

  • Thompson, A. E., Anderson, R. S., Rudolph, J., and Huang, L., 2002: Stable carbon isotope signatures of background tropospheric chloromethane and CFC113, Biogeochem. 60, 191–211.

    Article  Google Scholar 

  • Tokarczyk, R., Goodwin, K. D., and Saltzman, E. S., 2001: Methyl bromide loss rate constants in the North Pacific Ocean, Geophys. Res. Lett. 28, 4429–4432.

    Article  Google Scholar 

  • Tokarczyk, R., Saltzman, E. S., Moore, R. M., and Yvon-Lewis, S. A., 2003: Biological degradation of methyl chloride in coastal seawater, Global Biogeochem. Cycles 17, 1057, doi:10.1029/2002GB001949

    Article  Google Scholar 

  • Tsunogai, U., Yoshida, N., and Gamo, T., 1999: Carbon isotopic compositions of C2–C5 hydrocarbons and methyl chloride in urban, coastal, and maritime atmospheres over the western North Pacific, J. Geophys. Res. 104, 16,033–16,039.

    Article  Google Scholar 

  • Willi, A. V., 1977: Kinetic carbon and other isotope effects in cleavage and formation of bonds to carbon, Isot. Org. Chem. 3, 237–283.

    Google Scholar 

  • Yagi, K., Williams J., Wang N-Y, and Cicerone R. J., 1995: Atmospheric methyl bromide (CH3Br) from agricultural soil fumigations, Nature 267, 1979–1981.

    Google Scholar 

  • Yokouchi, Y., Ikeda, M., Inuzuka, Y., and Yukawa, T., 2002: Strong emission of methyl chloride from tropical plants. Nature 416, 163–165.

    Article  Google Scholar 

  • Yvon-Lewis, S. A. and Butler, J. H., 1997: The potential effect of oceanic biological degradation on the lifetime of atmospheric CH3Br, Geophys. Res. Lett. 24, 1227–1230.

    Article  Google Scholar 

  • Zafiriou, O. C., 1974: Photochemistry of halogens in the marine atmosphere, J. Geophys. Res. 79, 2730–2732.

    Google Scholar 

  • Zafiriou, O. C., 1975: Reaction of methyl halides with seawater and marine aerosols, J. Mar. Res. 33, 75–81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence G. Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baesman, S.M., Miller, L.G. Laboratory Determination of the Carbon Kinetic Isotope Effects (KIEs) for Reactions of Methyl Halides with Various Nucleophiles in Solution. J Atmos Chem 52, 203–219 (2005). https://doi.org/10.1007/s10874-005-1904-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-005-1904-0

Keywords

Navigation