Skip to main content
Log in

Structural Systematics of the Anhydrous 1:1 Proton-Transfer Compounds of 3,5-Dinitrosalicylic Acid with Aniline and Monosubstituted Anilines

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The crystal structures of the proton-transfer compounds of 3,5-dinitrosalicylic acid (DNSA) with a series of aniline-type Lewis bases (aniline, 2-hydroxyaniline, 2-methoxyaniline, 3-methoxyaniline, 4-fluoroaniline, 4-chloroaniline and 2-aminoaniline) have been determined and their hydrogen-bonding systems analysed. All are anhydrous 1:1 salts: [(C6H8N)+(C7H3N2O7)] (1), [(C6H8NO)+(C7H3N2O7)] (2), [(C7H10NO)+(C7H3N2O7)] (3), [(C7H10NO)+(C7H3N2O7)] (4), [(C6H7FN)+(C7H3N2O7)] (5), [(C6H7ClN)+(C7H3N2O7)] (6), and [(C6H9N2)+(C7H3N2O7)] (7), respectively. Crystals of 1 and 6 are triclinic, space group P-1 while the remainder are monoclinic with space group either P21/n (2, 4, 5 and 7) or P21 (3). Unit cell dimensions and contents are: for 1, a = 7.2027(17), b = 7.5699(17), c = 12.9615(16) Å, α = 84.464(14), β = 86.387(15), γ = 75.580(14)°, Z = 2; for 2, a = 7.407(3), b = 6.987(3), c = 27.653(11) Å, β = 94.906(7)°, Z = 4; for 3, a = 8.2816(18), b = 23.151(6), c = 3.9338(10) Å, β = 95.255(19)°, Z = 2; for 4, a = 11.209(2), b = 8.7858(19), c = 15.171(3) Å, β = 93.717(4)°, Z = 4; for 5, a = 26.377(3), b = 10.1602(12), c = 5.1384(10) Å, β = 91.996(13)°, Z = 4; for 6, a = 11.217(3), b = 14.156(5), c = 4.860(3) Å, α = 99.10(4), β = 96.99(4), γ = 76.35(2)°, Z = 2; for 7, a = 12.830(4), b = 8.145(3), c = 14.302(4) Å, β = 102.631(6)°, Z = 4. In all compounds at least one primary linear intermolecular N+–H⋯O(carboxyl) hydrogen-bonding interaction is present which, together with secondary hydrogen bonding results in the formation of mostly two-dimensional network structures, exceptions being with compounds 4 and 5 (one-dimensional) and compound 6 (three-dimensional). In only two cases (compounds 1 and 4), are weak cation–anion or cation–cation π–π interactions found while weak aromatic C–H⋯O interactions are insignificant. The study shows that all compounds fit the previously formulated classification scheme for primary and secondary interactive modes for proton-transfer compounds of 3,5-dinitrosalicylic acid but there are some unusual variants.

Graphical Abstract

The crystal structure determinations of the anhydrous 1:1 proton-transfer compounds of 3,5-dinitrosalicylic acid with aniline and a set of six monosubstituted anilines (2-hydroxy-, 2-methoxy-, 3-methoxy-, 4-fluoro-, 4-chloro- and 2-aminoaniline) have allowed the hydrogen-bonding systematics to be examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Smith G, Wermuth UD, Bott RC, Healy PC, White JM (2002) Aust J Chem 55:349

    Article  CAS  Google Scholar 

  2. Smith G, Wermuth UD, Healy PC, White JM (2002) Aust J Chem 56:707

    Article  Google Scholar 

  3. Smith G, Wermuth UD, Healy PC, White JM (2007) Aust J Chem 60:264

    Article  CAS  Google Scholar 

  4. Kumar VSS, Kuduva SS, Desiraju GR (2002) Acta Crystallogr E 58:o865

    Article  Google Scholar 

  5. Smith G, Baldry KE, Byriel KA, Kennard CHL (1997) Aust J Chem 50:727

    Article  CAS  Google Scholar 

  6. Smith G, Coyne MG, White JM (2000) Aust J Chem 53:203

    Article  CAS  Google Scholar 

  7. Bott RC, Smith G, Wermuth UD, Dwyer NC (2000) Aust J Chem 53:767

    Article  CAS  Google Scholar 

  8. Kumar VSS, Nangia A, Katz AK, Carrell HL (2002) Cryst Growth Des 2:313

    Article  CAS  Google Scholar 

  9. Smith G, Lynch DE, Byriel KA, Kennard CHL (1995) Aust J Chem 48:1133

    Article  CAS  Google Scholar 

  10. Kumar VSS, Kuduva SS, Desiraju GR (1999) J Chem Soc Perkin Trans 2:1069

    Google Scholar 

  11. Smith G, Wermuth UD, White JM (2002) Acta Crystallogr E 58:o1315

    Article  Google Scholar 

  12. Smith G, Wermuth UD, Healy PC, White JM (2006) Aust J Chem 59:320

    Article  CAS  Google Scholar 

  13. Smith G, Wermuth UD, Young DJ, Healy PC (2007) Acta Crystallogr E 63:o2517

    Article  Google Scholar 

  14. Smith G, Wermuth UD, Healy PC (2006) Acta Crystallogr E 62:o610

    Article  Google Scholar 

  15. Smith G, Wermuth UD, White JM (2006) Acta Crystallogr C 62:o402

    Article  Google Scholar 

  16. Etter MC, Adsmond D (1990) J Chem Soc Chem Commun, 589

  17. Etter MC, Frankenbach GM (1989) Materials 1:10

    CAS  Google Scholar 

  18. Issa YM, Hindawey AM, Issa RM, Nassar AMG (1980) Rev Roum Chim 25:1535

    CAS  Google Scholar 

  19. Hindawey AM, Nassar AMG, Issa RM, Issa YM (1980) Ind J Chem A 19:615–619

    Google Scholar 

  20. Issa YM, Hindawey AM, El-Kholy AE, Issa RM (1981) Gazz Chim Ital 111:27

    CAS  Google Scholar 

  21. Ng SW, Naumov P, Drew MGB, Wojciechowski G, Brzezinski B (2001) J Mol Struct 595:29

    Article  CAS  Google Scholar 

  22. Smith G, Wermuth UD, White JM (2005) Acta Crystallogr C 61:o464

    Article  Google Scholar 

  23. Etter MC, MacDonald JC, Bernstein J (1990) Acta Crystallogr B 46:256

    Article  Google Scholar 

  24. Smith G, Wermuth UD, Bott RC, White JM, Willis AC (2001) Aust J Chem 54:165

    Article  CAS  Google Scholar 

  25. Smith G, Wermuth UD, White JM (2001) Aust J Chem 54:171

    Article  CAS  Google Scholar 

  26. Song W-D, Guo X–X, Yu L (2007) Acta Crystallogr E 63:o1890

    Article  Google Scholar 

  27. Smith G, Lynch DE, Byriel KA, Kennard CHL (1996) Acta Crystallogr C 52:231

    Article  Google Scholar 

  28. Smith G, Wermuth UD, Healy PC (2002) Acta Crystallogr E 58:o845

    Article  Google Scholar 

  29. Smith G, Wermuth UD, White JM (2005) Acta Crystallogr E 62:o746

    Article  Google Scholar 

  30. Smith G, Bott RC, Wermuth UD (2001) Acta Crystallogr E 57:o640

    Article  Google Scholar 

  31. Mohamed HA, El-Medani SM, Ramadan RM (2005) J Ind Chem Soc 82:799

    CAS  Google Scholar 

  32. Subashini A, Samuel E, Muthiah PT, Bocelli G, Cantoni A (2007) Acta Crystallogr E 63:o4049

    Article  Google Scholar 

  33. Sheldrick GM (2008) Acta Crystallogr A 64:112

    Article  Google Scholar 

  34. Sheldrick GM (2008) SHELX97, program for crystal structure determination. University of Göttingen

  35. Molecular Structure Corporation (1999) TeXsan for Windows. Version 1.06. MSC, The Woodlands

  36. Spek AL (2003) J Appl Crystallogr 36:7

    Article  CAS  Google Scholar 

  37. Spek AL (2003) PLATON: A crystallographic computing suite

  38. Allen FH, Raithby PR, Shields GP, Taylor R (1998) J Chem Soc Chem Commun, 1034

  39. Sundaralingam M, Jensen LH (1965) Acta Crystallogr 18:1053

    Article  CAS  Google Scholar 

  40. Koman M, Martiska L, Valigura D, Glowiak T (2003) Acta Crystallogr E 59:o441

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the Faculty of Science and Technology, Queensland University of Technology, the School of Biomolecular and Physical Sciences, Griffith University and the School of Chemistry, University of Melbourne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, G., Wermuth, U.D., Healy, P.C. et al. Structural Systematics of the Anhydrous 1:1 Proton-Transfer Compounds of 3,5-Dinitrosalicylic Acid with Aniline and Monosubstituted Anilines. J Chem Crystallogr 41, 1649–1662 (2011). https://doi.org/10.1007/s10870-011-0153-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-011-0153-0

Keywords

Navigation