Skip to main content
Log in

Study of solvent–protein coupling effects by neutron scattering

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The present work aims to characterize the dynamical behavior of proteins immersed in bio-preserving liquids and glasses. For this purpose, the protein dUTPase was chosen, while the selected solvents were glycerol, a triol, and some homologous disaccharides, i.e., trehalose, maltose, and sucrose, which are known to be very effective bio-preserving agents. The results highlight that the disaccharides show a slowing down effect on the water dynamics, which is stronger for trehalose than in the case of the other disaccharides. Furthermore, a characterization of the medium which hosts the protein is performed by using an operative definition of fragility based on the mean square displacement extracted by elastic incoherent neutron scattering, which is directly connected to Angell’s kinetic fragility based on the viscosity. Finally, a study of the dynamics of the protein sequestered within the solvents is performed. The result shows that the protein dynamics is coupled with that of the surrounding matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Doster, W., Cusack, S., Petry, W.: Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature 337, 754–756 (1989)

    Article  ADS  Google Scholar 

  2. Bicout, D.J., Zaccai, G.: Protein flexibility from the dynamical transition: a force constant analysis. Biophys. J. 80, 1115–1123 (2001)

    Article  ADS  Google Scholar 

  3. Zaccai, G.: How soft is a protein? A force constant approach to protein dynamics measured by neutron scattering. Science 288, 1604–1607 (2000)

    Article  ADS  Google Scholar 

  4. Cordone, L., Ferrand, M., Vitrano, E., Zaccai, G.: Harmonic behavior of trehalose-coated carbon-monoxy-myoglobin at high temperature. Biophys. J. 76, 1043–1047 (1999)

    Article  Google Scholar 

  5. Reat, V., Dunn, R., Ferrand, M., Finney, J.L., Daniel, R.M., Smith, J.C.: Solvent dependence of dynamic transitions in protein solutions. Proc. Natl. Acad. Sci. USA 97, 9961–9966 (2000)

    Article  ADS  Google Scholar 

  6. Reat, V., Patzelt, H., Ferrand, M., Pfister, C., Oesterhelt, D., Zaccai, G.: Dynamics of different functional parts of bacteriorhodopsin: H-2H labeling and neutron scattering. Proc. Natl. Acad. Sci. USA 95, 4970–4975 (1998)

    Article  ADS  Google Scholar 

  7. Frauenfelder, H., McMahon, B.: Dynamics and function of proteins: the search for general concepts. Proc. Natl. Acad. Sci. USA 9995, 4795–4797 (1998)

    Article  ADS  Google Scholar 

  8. Paciaroni, A., Orecchini, A., Cornicchi, E., Marconi, M., Petrillo, C., Haertlein, M., Moulin, M., Schober, H., Tarek, M., Sacchetti, F.: Fingerprints of amorphous icelike behavior in the vibrational density of states of protein hydration water. Phys. Rev. Lett. 101, 148104 (2008)

    Article  ADS  Google Scholar 

  9. Fenimore, P.W., Frauenfelder, H., McMahon, B.H., Young, R.D.: Bulk-solvent and hydration-shell fluctuations, similar to α- and β-fluctuations in glasses, control protein motions and functions. Proc. Natl. Acad. Sci. USA 101, 14408–14413 (2004)

    Article  ADS  Google Scholar 

  10. Wood, K., Frolich, A., Paciaroni, A., Moulin, M., Hartlein, M., Zaccai, G., Tobias, D.J., Weik, M.: Coincidence of dynamical transitions in a soluble protein and its hydration water: direct measurements by neutron scattering and MD simulations. J. Am. Chem. Soc. 130, 4586–4587 (2008)

    Article  Google Scholar 

  11. Dirama, T.E., Curtis, J.E., Carri, G.A., Sokolov, A.P.: Coupling between lysozyme and trehalose dynamics: microscopic insights from molecular-dynamics simulations. J. Chem. Phys. 124, 034901–034909 (2006)

    Article  ADS  Google Scholar 

  12. Doster, W.: The dynamical transition of proteins, concepts and misconceptions. Eur. Biophys. J. 37, 591–602 (2008)

    Article  Google Scholar 

  13. Crowe, J.H., Crowe, L.M.: Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223, 701–703 (1984)

    Article  ADS  Google Scholar 

  14. Green, J.L., Angell, C.A.: Phase relations and vitrification in saccharide-water solutions and the trehalose anomaly. J. Phys. Chem. B 93, 2880–2882 (1989)

    Article  Google Scholar 

  15. Magazù, S., Maisano, G., Migliardo, F., Mondelli, C.: Mean square displacement relationship in bioprotectant systems by elastic neutron scattering. Biophys. J. 86, 3241–3249 (2004)

    Article  ADS  Google Scholar 

  16. Martinez, L.M., Angell, C.A.: A thermodynamic connection to the fragility of glass-forming liquids. Science 410, 663–667 (2001)

    Google Scholar 

  17. Debenedetti, P.G., Stillinger, F.H.: Supercooled liquids and the glass transition. Nature 410, 259–267 (2001)

    Article  ADS  Google Scholar 

  18. Angell, C.A., Poole, P.H., Shao, J.: Glassforming liquids, anomalous liquids and polyamorphism in liquids and biopolymers. Il Nuovo Cimento D 16, 993–1025 (1994)

    Article  ADS  Google Scholar 

  19. Angell, C.A.: Glassforming liquids with microscopic to macroscopic two-state complexity. Prog. Theor. Phys. 126, 1–7 (1997)

    Article  Google Scholar 

  20. Stillinger, F.H., Weber, T.A.: Hidden structure in liquids. Phys. Rev. A 25, 978–989 (1982)

    Article  ADS  Google Scholar 

  21. Scopigno, T., Ruocco, G., Sette, F., Monaco, G.: Is the fragility of a liquid embedded in the properties of its glass? Science 302, 849–852 (2003)

    Article  ADS  Google Scholar 

  22. Goldstein, M.: Viscous liquids and the glass transition: a potential energy barrier picture. J. Chem. Phys. 51, 3728–3739 (1969)

    Article  ADS  Google Scholar 

  23. Barabas, O., Pongracz, V., Kovari, J., Wilmanns, M., Vertessy, B.G.: (2004) Structural insights into the catalytic mechanism of phosphate ester hydrolysis by dUTPase. J. Biol. Chem. 279, 42907–42915

    Article  Google Scholar 

  24. Adams, M.A., Howells, W.S., Telling M.T.F.: The IRIS user guide (2nd ed). Rutherford Appleton Laboratory, UK (2001)

    Google Scholar 

  25. Telling M.T.F., Howells, W.S.: Modes—IRIS data analysis (1st ed). Rutherford Appleton Laboratory, UK (2003)

    Google Scholar 

  26. Bee, M.: Quasielastic Neutron Scattering. A. Hilger, Bristol and Philadelphia (1988)

    Google Scholar 

  27. Blochowicz, T., Gainaru, C., Medick, P., Tschirwitz, C., Rossler, E.A.: The dynamic susceptibility in glass forming molecular liquids: the search for universal relaxation patterns II. J. Chem. Phys. 124, 134503–134514 (2006)

    Article  ADS  Google Scholar 

  28. Paluch, M., Casalini, R., Roland, C.M.: Cohen-Grest model for the dynamics of supercooled liquids. Phys. Rev. E 67, 021508 (2003)

    Article  ADS  Google Scholar 

  29. Blazhnov, I.V., Magazù, S., Maisano, G., Malomuzh, N.P., Migliardo, F.: Macro- and microdefinitions of fragility of hydrogen-bonded glass-forming liquids. Phys. Rev. E 73, 031201 (2006)

    Article  ADS  Google Scholar 

  30. Cornicchi, E., Cinelli, S., Natali, F., Onori, G., Paciaroni, A.: Elastic neutron scattering study of proton dynamics in glycerol. Physica B 350, e951–e954 (2004)

    Article  ADS  Google Scholar 

  31. Miller, S.L., Lazcano, A.: The origin of life—did it occur at high temperatures? J. Mol. Evol. 41, 689–692 (1995)

    Article  Google Scholar 

  32. Forterre, P.: A hot topic: the origin of hyperthermophiles. Cell 85, 789–792 (1996)

    Article  Google Scholar 

  33. Brock, T.D., Brock, K.M., Belly, R.T., Weiss, R.L.: Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch. Mikrobiol. 84, 54–68 (1972)

    Article  Google Scholar 

  34. Grogan, D.W.: Hyperthermophiles and the problem of DNA instability. Mol. Microbiol. 28, 1043–1049 (1998)

    Article  Google Scholar 

  35. Daniel, R.M., Cowan, D.A.: Biomolecular stability and life at high temperatures. Cell. Mol. Life Sci. 57, 250–264 (2000)

    Article  Google Scholar 

  36. Vielle, C., Zeikus, G.: Hyperthermophilic enzymes: sources, uses and molecular mechanisms for thermostability. J. Microbiol. Mol. Biol. R 65, 1–43 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

F. Migliardo gratefully acknowledges UNESCO-L’Oréal for the International Fellowship for Young Women in Life Sciences 2008. The authors acknowledge the Institute Laue Langevin (Grenoble, France) and the ISIS facility (Chilton, UK) for the dedicated runs on the IN13 spectrometer and the IRIS spectrometer, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Magazù.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varga, B., Migliardo, F., Takacs, E. et al. Study of solvent–protein coupling effects by neutron scattering. J Biol Phys 36, 207–220 (2010). https://doi.org/10.1007/s10867-009-9177-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-009-9177-5

Keywords

Navigation