Skip to main content
Log in

Evaluation of leaf water status by means of permittivity at terahertz frequencies

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

We present an electromagnetic model of plant leaves which describes their permittivity at terahertz frequencies. The complex permittivity is investigated as a function of the water content of the leaf. Our measurements on coffee leaves (Coffea arabica L.) demonstrate that the dielectric material parameters can be employed to determine the leaf water status and, therefore, to monitor drought stress in plant leaves. The electromagnetic model consists of an effective medium theory, which is implemented by a third order extension of the Landau, Lifshitz, Looyenga model. The influence of scattering becomes important at higher frequencies and is modeled by a Rayleigh roughness factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bacic, G., Ratkovic, R.: NMR studies of radial exchange and distribution of water in maize roots: the relevance of modelling of exchange kinetics. J. Exp. Bot. 38, 1284–1297 (1987). doi:10.1093/jxb/38.8.1284

    Article  Google Scholar 

  2. El-Rayes, M.A., Ulaby, F.T.: Microwave dielectric spectrum of vegetation - i: experimental observations. IEEE Trans. Geosci. Remote Sens. GE-25(5), 541–549 (1987). doi:10.1109/TGRS.1987.289832

    Article  ADS  Google Scholar 

  3. Ulaby, F.T., El-Rayes, M.A.: Microwave dielectric spectrum of vegetation - ii: dual-dispersion model. IEEE Trans. Geosci. Remote Sens. GE-25(5), 550–557 (1987). doi:10.1109/TGRS.1987.289833

    Article  ADS  Google Scholar 

  4. Mätzler, C.: Microwave (1–100 GHz) dielectric model of leaves. IEEE Trans. Geosci. Remote Sens. 32(4), 947–949 (1994). doi:10.1109/36.298024

    Article  ADS  Google Scholar 

  5. Ulaby, F.T., Jedlicka, R.P.: Microwave dielectric properties of plant materials. IEEE Trans. Geosci. Remote Sens. GE-22(4), 406–415 (1984). doi:10.1109/TGRS.1984.350644

    Article  ADS  Google Scholar 

  6. Tucker, C.J.: Remote sensing of leaf water content in the near infrared. Remote Sens. Environ. 10(1), 23–32 (1980). doi:10.1016/0034-4257(80)90096-6

    Article  Google Scholar 

  7. Hunt, E.R., Jr., Rock, B.N., Nobel, P.S.: Measurement of leaf relative water content by infrared reflectance. Remote Sens. Environ. 22(3), 429–435 (1987). doi:10.1016/0034-4257(87)90094-0

    Article  Google Scholar 

  8. Hunt, E.R., Jr., Rock, B.N.: Detection of changes in leaf water content using near- and middle-infrared reflectances. Remote Sens. Environ. 30(1), 43–54 (1989). doi:10.1016/0034-4257(89)90046-1

    Article  Google Scholar 

  9. Eitel, J.U.H., Gessler, P.E., Smith, A.M.S., Robberecht, R.: Suitability of existing and novel spectral indices to remotely detect water stress in populus spp. For. Ecol. Manag. 1–3(229), 170–182 (2006). doi:10.1016/j.foreco.2006.03.027

    Article  Google Scholar 

  10. Seelig, H., Adams, W.W., Hoehn, A., Stodieck, L.S., Klaus, D.M., Emery, W.J.: Extraneous variables and their influence on reflectance-based measurements of leaf water content. Irrig. Sci. 26(5), 407–414 (2008). doi:10.1007/s00271-008-0105-4

    Article  Google Scholar 

  11. Mittleman, D.M., Jacobson, R.H., Nuss, M.C.: T-ray imaging. IEEE J. Sel. Top. Quantum Electron. 2(3), 679–692 (1996). doi:10.1109/2944.571768

    Article  Google Scholar 

  12. Hadjiloucas, S., Karatzas, L.S., Bowen, J.W.: Measurements of leaf water content using terahertz radiation. IEEE Trans. Microwave Theor. Tech. 47(2), 142–149 (1999). doi:10.1109/22.744288

    Article  Google Scholar 

  13. Grischkowsky, D., Keiding, S., van Exter, M., Fattinger, Ch.: Far-infrared time-domain spectroscopy with THz beams of dielectrics and semiconductors. J. Opt. Soc. Am. B 7(10), 2006–2015 (1990). doi:10.1364/JOSAB.7.002006

    Article  ADS  Google Scholar 

  14. Vieweg, N., Krumbholz, N., Hasek, T., Wilk, R., Bartels, V., Keseberg, C., Pethukhov, V., Mikulics, M., Wetenkamp, L., Koch, M.: Fiber-coupled THz spectroscopy for monitoring polymeric compounding processes. In: Paper Presented at SPIE European Symposium on Optical Metrology, vol. 6616, pp. 66163M1-8. Munich (2007)

  15. Looyenga, H.: Dielectric constants of heterogeneous mixtures. Physica 31(3), 401–406 (1965). doi:10.1016/0031-8914(65)90045-5

    Article  ADS  Google Scholar 

  16. Liebe, H.J., Hufford, G.A., Manabe, T.: Model for the complex permittivity of water at frequencies below 1 THz. Int. J. Infrared Millim. Waves 12(7), 659–675 (1991). doi:10.1007/BF01008897

    Article  ADS  Google Scholar 

  17. Beckmann, P., Spizzichino, A.: The Scattering of Electromagnetic Waves from Rough Surfaces. Artech House, Norwood (1987)

    Google Scholar 

Download references

Acknowledgement

The authors acknowledge financial support for this research from the BMELV in the framework of the project: “Terahertz-Messung zur In vivo-Analyse des Trockenstresses bei Nutzpflanzen: Optoelektronisches Messwerkzeug zur selektiven Züchtung und Kultivierung.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Jördens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jördens, C., Scheller, M., Breitenstein, B. et al. Evaluation of leaf water status by means of permittivity at terahertz frequencies. J Biol Phys 35, 255–264 (2009). https://doi.org/10.1007/s10867-009-9161-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-009-9161-0

Keywords

Navigation