Skip to main content
Log in

ATP-binding cassette transporter ABCA4: Molecular properties and role in vision and macular degeneration

  • Transport ATPases: Structure, Mechanism and Relevance to Multiple Diseases
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

ABCA4, also known as ABCR or the rim protein, is a member of the ABCA subfamily of ATP binding cassette (ABC) transporters expressed in vertebrate rod and cone photoreceptor cells and localized to outer segment disk membranes. ABCA4 is organized in two tandem halves, each consisting of a transmembrane segment followed successively by a large exocytoplasmic domain, a multispanning membrane domain, and a nucleotide-binding domain. Over 400 mutations in ABCA4 have been linked to Stargardt macular degeneration and related retinal degenerative diseases that cause severe vision loss in affected individuals. Direct binding studies and ATPase activation measurements have identified N-retinylidene-phosphatidylethanolamine, a product generated from the photobleaching of rhodopsin, as the substrate for ABCA4. Mice deficient in ABCA4 accumulate phosphatidylethanolamine, all-trans retinal, and N-retinylidene-phosphatidylethanolamine in photoreceptors and the diretinal pyridinium compound A2E in retinal pigment epithelial cells. On the basis of these studies, ABCA4 is proposed to actively transport or flip N-retinylidene-phosphatidylethanolamine from the lumen to the cytoplasmic side of disc membranes following the photobleaching of rhodopsin. This transport activity insures that retinoids do not accumulate in disc membranes. Disease-linked mutations in ABCA4 that result in diminished transport activity lead to an accumulation of all-trans retinal and N-retinylidene-PE in disc membranes which react to produce A2E precursors. A2E progressively accumulates as lipofuscin deposits in retinal pigment epithelial cells as a result of phagocytosis of outer segment discs. A2E and photo-oxidation products cause RPE cell death and consequently photoreceptor degeneration resulting in a loss in vision in individuals with Stargardt macular degeneration and other retinal degenerative diseases associated with mutations in ABCA4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahn J, Wong JT, Molday RS (2000) The effect of lipid environment and retinoids on the ATPase activity of ABCR, the photoreceptor ABC transporter responsible for Stargardt macular dystrophy. J Biol Chem 275:20399–20405

    Article  CAS  Google Scholar 

  • Ahn J, Beharry S, Molday LL, Molday RS (2003) Functional interaction between the two halves of the photoreceptor-specific ATP binding cassette protein ABCR (ABCA4). Evidence for a non-exchangeable ADP in the first nucleotide binding domain. J Biol Chem 278:39600–39608

    Article  CAS  Google Scholar 

  • Akiyama M, Sugiyama-Nakagiri Y, Sakai K, McMillan JR, Goto M, Arita K, Tsuji-Abe Y, Tabata N, Matsuoka K, Sasaki R, Sawamura D, Shimizu H (2005) Mutations in lipid transporter ABCA12 in harlequin ichthyosis and functional recovery by corrective gene transfer. J Clin Invest 115:1777–1784

    Article  CAS  Google Scholar 

  • Allikmets R (2000) Simple and complex ABCR: genetic predisposition to retinal disease. Am J Hum Genet 67:793–799

    Article  CAS  Google Scholar 

  • Allikmets R, Singh N, Sun H, Shroyer NF, Hutchinson A, Chidambaram A, Gerrard B, Baird L, Stauffer D, Peiffer A, Rattner A, Smallwood P, Li Y, Anderson KL, Lewis RA, Nathans J, Leppert M, Dean M, Lupski JR (1997a) A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet 15:236–246

    Article  CAS  Google Scholar 

  • Allikmets R, Shroyer NF, Singh N, Seddon JM, Lewis RA, Bernstein PS, Peiffer A, Zabriskie NA, Li Y, Hutchinson A, Dean M, Lupski JR, Leppert M (1997b) Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science 277:1805–1807

    Article  CAS  Google Scholar 

  • Anderson RE, Maude MB (1970) Phospholipids of bovine outer segments. Biochemistry 9:3624–3628

    Article  CAS  Google Scholar 

  • Arshavsky VY, Lamb TD, Pugh EN Jr (2002) G proteins and phototransduction. Annu Rev Physiol 64:153–187

    Article  CAS  Google Scholar 

  • Azarian SM, Travis GH (1997) The photoreceptor rim protein is an ABC transporter encoded by the gene for recessive Stargardt's disease (ABCR). FEBS Lett 409:247–252

    Article  CAS  Google Scholar 

  • Ban N, Matsumura Y, Sakai H, Takanezawa Y, Sasaki M, Arai H, Inagaki N (2007) ABCA3 as a lipid transporter in pulmonary surfactant biogenesis. J Biol Chem 282:9628–9634

    Article  CAS  Google Scholar 

  • Beharry S, Zhong M, Molday RS (2004) N-retinylidene-phosphatidylethanolamine is the preferred retinoid substrate for the photoreceptor-specific ABC transporter ABCA4 (ABCR). J Biol Chem 279:53972–53979

    Article  CAS  Google Scholar 

  • Ben-Shabat S, Parish CA, Vollmer HR, Itagaki Y, Fishkin N, Nakanishi K, Sparrow JR (2002) Biosynthetic studies of A2E, a major fluorophore of retinal pigment epithelial lipofuscin. J Biol Chem 277:7183–7190

    Article  CAS  Google Scholar 

  • Bhongsatiern J, Ohtsuki S, Tachikawa M, Hori S, Terasaki T (2005) Retinal-specific ATP-binding cassette transporter (ABCR/ABCA4) is expressed at the choroid plexus in rat brain. J Neurochem 92:1277–1280

    Article  CAS  Google Scholar 

  • Biswas EE (2001) Nucleotide binding domain 1 of the human retinal ABC transporter functions as a general ribonucleotides. Biochemistry 40:8181–8187

    Article  CAS  Google Scholar 

  • Biswas EE, Biswas SB (2000) The C-terminal nucleotide binding domain of the human retinal ABCR protein is an adenosine triphosphatase. Biochemistry 39:15879–15886

    Article  CAS  Google Scholar 

  • Borst P, Elferink RO (2002) Mammalian ABC transporters in health and disease. Annu Rev Biochem 71:537–592

    Article  CAS  Google Scholar 

  • Borst P, Zelcer N, van Helvoort A (2000) ABC transporters in lipid transport. Biochim Biophys Acta 1486:128–144

    CAS  Google Scholar 

  • Brooks-Wilson A, Marcil M, Clee SM, Zhang LH, Roomp K, van Dam M, Yu L, Brewer C, Collins JA, Molhuizen HO et al (1999) Mutations in ABCI in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet 22:336–345

    Article  CAS  Google Scholar 

  • Buczylko J, Saari JC, Crouch RK, Palczewski K (1996) Mechanisms of opsin activation. J Biol Chem 271:20621–20630

    Article  CAS  Google Scholar 

  • Bui TV, Han Y, Radu RA, Travis GH, Mata NL (2006) Characterization of native retinal fluorophores involved in biosynthesis of A2E and lipofuscin-associated retinopathies. J Biol Chem 281:18112–18119

    Article  CAS  Google Scholar 

  • Bungert S, Molday LL, Molday RS (2001) Membrane topology of the ATP binding cassette transporter ABCR and its relationship to ABCl and related ABCA transporters: identification of N-linked glycosylations sites. J Biol Chem 276:23539–23546

    Article  CAS  Google Scholar 

  • Chroni A, Liu T, Fitzgerald ML, Freeman MW, Zannis VI (2004) Cross-linking and lipid efflux properties of apoA-I mutants suggest direct association between apoA-I helices and ABCA1. Biochemistry 43:2126–2139

    Article  CAS  Google Scholar 

  • Cremers FP, van de Pol DJ, van Driel M, den Hollander AI, van Haren FJ, Knoers NV, Tijmes N, Bergen AA, Rohrschneider K, Blankenagel A et al (1998) Autosomal recessive retinitis pigmentosa and cone-rod dystrophy caused by splice site mutations in the Stargardt’s disease gene ABCR. Hum Mol Genet 7:355–362

    Article  CAS  Google Scholar 

  • Dean M, Allikmets R (2001) Complete characterization of the human ABC gene family. J Bioenerg Biomembr 33:475–479

    Article  CAS  Google Scholar 

  • Dean M, Annilo T (2005) Evolution of the ATP-binding cassette (ABC) transporter superfamily in vertebrates. Annu Rev Genomics Hum Genet 6:123–142

    Article  CAS  Google Scholar 

  • Delori FC, Staurenghi G, Arend O, Dorey CK, Goger DG, Weiter JJ (1995) In vivo measurement of lipofuscin in Stargardt's disease–Fundus flavimaculatus. Invest Ophthalmol Vis Sci 36:2327–2331

    CAS  Google Scholar 

  • Eldred GE, Lasky MR (1993) Retinal age pigments generated by self-assembling lysosomotropic detergents. Nature 361:724–726

    Article  CAS  Google Scholar 

  • Fishman GA, Farbman JS, Alexander KR (1991) Delayed rod dark adaptation in patients with Stargardt’s disease. Ophthalmology 98:957–962

    CAS  Google Scholar 

  • Fitzgerald ML, Morris AL, Rhee JS, Andersson LP, Mendez AJ, Freeman MW (2002) Naturally occurring mutations in the largest extracellular loops of ABCAI can disrupt its direct interaction with apolipoprotein A-I. J Biol Chem 277:33178–33187

    Article  CAS  Google Scholar 

  • Fitzgerald ML, Okuhira K, Short GF 3rd, Manning JJ, Bell SA, Freeman MW (2004) ATP-binding cassette transporter Al contains a novel C-terminal VFVNFA motif that is required for its cholesterol efflux and ApoA-I binding activities. J Biol Chem 279:48477–48485

    Article  CAS  Google Scholar 

  • Fliesler SJ, Anderson RE (1983) Chemistry and metabolism of lipids in the vertebrate retina. Prog Lipid Res 22:79–131

    Article  CAS  Google Scholar 

  • Gelisken O, De Laey JJ (1985) A clinical review of Stargardt’s disease and/or fundus flavimaculatus with follow-up. Int Ophthalmol 8:225–235

    Article  CAS  Google Scholar 

  • Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113

    Article  CAS  Google Scholar 

  • Higgins CF, Linton KJ (2004) The ATP switch model for ABC transporters. Nat Struct Mol Biol 11:918–926

    Article  CAS  Google Scholar 

  • Holz FG, Schutt F, Kopitz J, Eldred GE, Kruse FE, Volcker HE, Cantz M (1999) Inhibition of lysosomal degradative functions in RPE cells by a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci 40:737–743

    CAS  Google Scholar 

  • Illing M, Molday LL, Molday RS (1997) The 220-kDa rim protein of retinal rod outer segments is a member of the ABC transporter superfamily. J Biol Chem 272:10303–10310

    Article  CAS  Google Scholar 

  • Jang YP, Matsuda H, Itagaki Y, Nakanishi K, Sparrow JR (2005) Characterization of peroxy-A2E and furan-A2E photooxidation products and detection in human and mouse retinal pigment epithelial cell lipofuscin. J Biol Chem 280:39732–39739

    Article  CAS  Google Scholar 

  • Jin M, Li S, Moghrabi WN, Sun H, Travis GH (2005) Rpe65 is the retinoid isomerase in bovine retinal pigment epithelium. Cell 122:449–459

    Article  CAS  Google Scholar 

  • Kaminski WE, Piehler A, Wenzel JJ (2006) ABC a-subfamily transporters: structure, function and disease. Biochim Biophys Acta 1762:510–524

    CAS  Google Scholar 

  • Lamb TD, Pugh EN Jr (2004) Dark adaptation and the retinoid cycle of vision. Prog Retin Eye Res 23:307–380

    Article  CAS  Google Scholar 

  • Lamb TD, Pugh EN Jr (2006) Phototransduction, dark adaptation, and rhodopsin regeneration the proctor lecture. Invest Ophthalmol Vis Sci 47:5137–5152

    Article  Google Scholar 

  • Lefevre C, Audebert S, Jobard F, Bouadjar B, Lakhdar H, Boughdene-Stambouli O, Blanchet-Bardon C, Heilig R, Foglio M, Weissenbach J et al (2003) Mutations in the transporter ABCA12 are associated with lamellar ichthyosis type2. Hum Mol Genet 12:2369–2378

    Article  CAS  Google Scholar 

  • Lewis RA, Shroyer NF, Singh N, Allikmets R, Hutchinson A, Li Y, Lupski JR, Leppert M, Dean M (1999) Genotype/Phenotype analysis of a photoreceptor-specific ATP-binding cassette transporter gene, ABCR, in Stargardt disease. Am J Hum Genet 64:422–434

    Article  CAS  Google Scholar 

  • Martinez-Mir A, Paloma E, Allikmets R, Ayuso C, del Rio T, Dean M, Vilageliu L, Gonzalez-Duarte R, Balcells S (1998) Retinitis pigmentosa caused by a homozygous mutation in the Stargardt disease gene ABCR. Nat Genet 18:11–12

    Article  CAS  Google Scholar 

  • Mata NL, Weng J, Travis GH (2000) Biosynthesis of a major lipofuscin fluorophore in mice and humans with ABCR-mediated retinal and macular deseneration. Proc Natl Acad Sci U S A 97:7154–7159

    Article  CAS  Google Scholar 

  • Mata NL, Tzekov RT, Liu X, Weng J, Birch DG, Travis GH (2001) Delayed dark-adaptation and lipofuscin accumulation in abcr+/- mice: implications for involvement of ABCR in age-related macular degeneration. Invest Ophthalmol Vis Sci 42:1685–1690

    CAS  Google Scholar 

  • Maugeri A, Klevering BJ, Rohrschneider K, Blankenagel A, Brunner HG, Deutman AF, Hoyng CB, Cremers FP (2000) Mutations in the ABCA4 (ABCR) gene are the major cause of autosomal recessive cone-Rod dystrophy. Am J Hum Genet 67:960–966

    Article  CAS  Google Scholar 

  • Maugeri A, van Driel MA, van de Pol DJ, Klevering BJ, van Haren FJ, Tijmes N, Bergen AA, Rohrschneider K, Blankenagel A, Pinckers AJ et al (1999) The 2588G–>C mutation in the ABCR gene is a mild frequent founder mutation in the Western European population and allows the classification of ABCR mutations in patients with Stargardt disease. Am J Hum Genet 64:1024–1035

    Article  CAS  Google Scholar 

  • McBee JK, Palczewski K, Baehr W, Pepperberg DR (2001) Confronting complexity: the interlink of phototransduction and retinoid metabolism in the vertebrate retina. Prog Retin Eye Res 20:469–529

    Article  CAS  Google Scholar 

  • Moiseyev G, Chen Y, Takahashi Y, Wu BX, Ma JX (2005) RPE65 is the isomerohydrolase in the retinoid visual cycle. Proc Natl Acad Sci U S A 102:12413–12418

    Article  CAS  Google Scholar 

  • Molday LL, Rabin AR, Molday RS (2000) ABCR expression in foveal cone photoreceptors and its role in Stargardt macular dystrophy. Nat Genet 25:257–258

    Article  CAS  Google Scholar 

  • Nasonkin I, Illing M, Koehler MR, Schmid M, Molday RS, Weber BH (1998) Mapping of the rod photoreceptor ABC transporler (ABCR) to 1p2l -p22.1 and identification of novel mutations in Stargardt’s disease. Hum Genet 102:21–26

    Article  CAS  Google Scholar 

  • Oram JF (2002) ATP-binding cassette transporter Al and cholesterol trafficking. Curr Opin Lipidol 13:373–381

    Article  CAS  Google Scholar 

  • Oswald C, Holland IB, Schmitt L (2006) The motor domains of ABC-transporters. What can structures tell us? Naunyn Schmiedebergs Arch Pharmacol 372:385–399

    Article  CAS  Google Scholar 

  • Papermaster DS, Reilly P, Schneider BG (1982) Cone lamellae and red and green rod outer segment disks contain a large intrinsic membrane protein on their margins: an ultrastructural immunocytochemical study of fiog retinas. Vision Res 22:1417–1428

    Article  CAS  Google Scholar 

  • Papermaster DS, Schneider BG, Zorn MA, Kraehenbuhl JP (1978) lmmunocytochemical localization of a large intrinsic membrane protein to the incisures and margins of frog rod outer segment disks. J Cell Biol 78:415–425

    Article  CAS  Google Scholar 

  • Parish CA, Hashimoto M, Nakanishi K, Dillon J, Sparrow J (1998) Isolation and one-step preparation of A2E and iso-A2E, fluorophores from human retinal pigment epithelium. Proc Natl Acad Sci U S A 95:14609–14613

    Article  CAS  Google Scholar 

  • Poincelot RP, Millar PG, Kimbel RL Jr, Abrahamson EW (1969) Lipid to protein chromophore transfer in the photolysis of visual pigments. Nature 221:256–257

    Article  CAS  Google Scholar 

  • Radu RA, Mata NL, Bagla A, Travis GH (2004) Light exposure stimulates formation of A2E oxiranes in a mouse model of Starsardt’s macular deseneration. Proc Natl Acad Sci U S A 101:5928–5933

    Article  CAS  Google Scholar 

  • Radu RA, Mata NL, Nusinowitz S, Liu X, Sieving PA, Travis GH (2003) Treatment with isotretinoin inhibits lipofuscin accumulation in a mouse model of recessive Stargardt’s macular degeneration. Proc Natl Acad Sci U S A 100:4742–4747

    Article  CAS  Google Scholar 

  • Rivera A, White K, Stohr H, Steiner K, Hemmrich N, Grimm T, Jurklies B, Lorenz B, Scholl HP, Apfelstedt-Sylla E, Weber BH (2000) A comprehensive survey of sequence variation in the ABCA4 (ABCR) gene in Stargardt disease and age-related macular degeneration. Am J Hum Genet 67:800–813

    Article  CAS  Google Scholar 

  • Rozet JM, Gerber S, Souied E, Ducroq D, Perrault I, Ghazi I, Soubrane G, Coscas G, Dufier JL, Munnich A, Kaplan J (1999) The ABCR gene: a major disease gene in macular and peripheral retinal degenerations with onset from early childhood to the elderly. Mol Genet Metab 68:310–315

    Article  CAS  Google Scholar 

  • Rozet JM, Gerber S, Souied E, Perrault I, Chatelin S, Ghazi I, Leowski C, Dufier JL, Munnich A, Kaplan J (1998) Spectrum of ABCR gene mutations in autosomal recessive macular dystrophies. Eur J Hum Genet 6:291–295

    Article  CAS  Google Scholar 

  • Saari JC (2000) Biochemistry of visual pigment regeneration: the Friedenwald lecture. Invest Ophthalmol Vis Sci 41:337–348

    CAS  Google Scholar 

  • Shapiro AB, Ling V (1994) ATPase activity of purified and reconstituted P-glycoprotein from Chinese hamster ovary cells. J Biol Chem 269:3745–3754

    CAS  Google Scholar 

  • Shroyer NF, Lewis RA, Allikmets R, Singh N, Dean M, Leppert M, Lupski JR (1999) The rod photoreceptor ATP-binding cassette transporter gene, ABCR, and retinal disease: from monogenic to multifactorial. Vision Res 39:2537–2544

    Article  CAS  Google Scholar 

  • Shulenin S, Nogee LM, Annilo T, Wert SE, Whitsett JA, Dean M (2004) ABCA3 gene mutations in newborns with fatal surfactant deficiency. N Engl J Med 350:1296–1303

    Article  CAS  Google Scholar 

  • Sparrow JR, Boulton M (2005) RPE lipofuscin and its role in retinal pathobiology. Exp Eye Res 80:595–606

    Article  CAS  Google Scholar 

  • Sparrow JR, Nakanishi K, Parish CA (2000) The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. Invest Ophthalmol Vis Sci 41:1981–1989

    CAS  Google Scholar 

  • Stargardt K (1909) Uber familiare, progressive degeenration under makulagegend des augen. Albrecht von Graefes Arch Ophthalmol 71:534–550

    Google Scholar 

  • Stenirri S, Battistella S, Fermo I, Manitto MP, Martina E, Brancato R, Ferrari M, Cremonesi L (2006) De novo deletion removes a conserved motif in the C-terminus of ABCA4 and results in cone-rod dystrophy. Clin Chem Lab Med 44:533–537

    Article  CAS  Google Scholar 

  • Sun H, Molday RS, Nathans J (1999) Retinal stimulates ATP hydrolysis by purified and reconstituted ABCR, the photoreceptor-specific ATP-binding cassette transporter responsible for Stargardt disease. J Biol Chem 274:8269–8281

    Article  CAS  Google Scholar 

  • Sun H, Nathans J (1997) Stargardt’s ABCR is localized to the disc membrane of retinal rod outer segments. Nat Genet 17:15–16

    Article  Google Scholar 

  • Sun H, Smallwood PM, Nathans J (2000) Biochemical defects in ABCR protein variants associated with human retinopathies. Nat Genet 26:242–246

    Article  CAS  Google Scholar 

  • Surya A, Knox BE (1998) Enhancement of opsin activity by all-trans-retinal. Exp Eye Res 66:599–603

    Article  CAS  Google Scholar 

  • Takahashi K, Kimura Y, Kioka N, Matsuo M, Ueda K (2006) Purification and ATPase activity of human ABCA1. J Biol Chem 281:10760–10768

    Article  CAS  Google Scholar 

  • Wang N, Silver DL, Costet P, Tall AR (2000) Specific binding of ApoA-I, enhanced cholesterol efflux, and altered plasma membrane morphology in cells expressing ABCI. J Biol Chem 275:33053–33058

    Article  CAS  Google Scholar 

  • Wang N, Silver DL, Thiele C, Tall AR (2001) ATP-binding cassette transporter Al (ABCAI) functions as a cholesterol efflux regulatory protein. J Biol Chem 276:23742–23747

    Article  CAS  Google Scholar 

  • Webster AR, Heon E, Lotery AJ, Vandenburgh K, Casavant TL, Oh KT, Beck G, Fishman GA, Lam BL, Levin A et al (2001) An analysis of allelic variation in the ABCA4 gene. Invest Ophthalmol Vis Sci 42:1179–1189

    CAS  Google Scholar 

  • Weleber RG (1994) Stargardt’s macular dystrophy. Arch Ophthalmol 112:752–754

    CAS  Google Scholar 

  • Weng J, Mata NL, Azarian SM, Tzekov RT, Birch DG, Travis GH (1999) Insights into the function of rim protein in photoreceptors and etiology of Stargardt’s Disease from the phenotype in abcr knockout mice. Cell 98:13–23

    Article  CAS  Google Scholar 

  • Wiszniewski W, Zaremba CM, Yatsenko AN, Jamrich M, Wensel TG, Lewis RA, Lupski JR (2005) ABCA4 mutations causing mislocalization are found frequently in patients with severe retinal dystrophies. Hum Mol Genet 14:2769–2778

    Article  CAS  Google Scholar 

  • Yatsenko AN, Wiszniewski W, Zaremba CM, Jamrich M, Lupski JR (2005) Evolution of ABCA4 proteins in vertebrates. J Mol Evol 60:72–80

    Article  CAS  Google Scholar 

  • Zhou J, Jang YP, Kim SR, Sparrow JR (2006) Complement activation by photooxidation products of A2E, a lipofuscin constituent of the retinal pigment epithelium. Proc Natl Acad Sci U S A 103:16182–16187

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Molday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molday, R.S. ATP-binding cassette transporter ABCA4: Molecular properties and role in vision and macular degeneration. J Bioenerg Biomembr 39, 507–517 (2007). https://doi.org/10.1007/s10863-007-9118-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-007-9118-6

Keywords

Navigation