Skip to main content
Log in

The Remarkable Transport Mechanism of P-Glycoprotein: A Multidrug Transporter

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

 

Human P-glycoprotein (ABCB1) is a primary multidrug transporter located in plasma membranes, that utilizes the energy of ATP hydrolysis to pump toxic xenobiotics out of cells. P-glycoprotein employs a most unusual molecular mechanism to perform this drug transport function. Here we review our work to elucidate the molecular mechanism of drug transport by P-glycoprotein. High level heterologous expression of human P-glycoprotein, in the yeast Saccharomyces cerevisiae, has facilitated biophysical studies in purified proteoliposome preparations. Development of novel spin-labeled transport substrates has allowed for quantitative and rigorous measurements of drug transport in real time by EPR spectroscopy. We have developed a new drug transport model of P-glycoprotein from the results of mutagenic, quantitative thermodynamic and kinetic studies. This model satisfactorily accounts for most of the unusual kinetic, coupling, and physiological features of P-glycoprotein. Additionally, an atomic detail structural model of P-glycoprotein has been devised to place our results within a proper structural context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Shawi, M. K., Polar, M. K., Omote, H., and Figler, R. A. (2003). J. Biol. Chem. 278, 52629–52640.

    Article  CAS  Google Scholar 

  • Al-Shawi, M. K., and Senior, A. E. (1993). J. Biol. Chem. 268, 4197–4206.

    CAS  Google Scholar 

  • Ambudkar, S. V., Dey, S., Hrycyna, C. A., Ramachandra, M., Pastan, I., and Gottesman, M. M. (1999). Annu. Rev. Pharmacol. Toxicol. 39, 361–398.

    Article  CAS  Google Scholar 

  • Chang, G. (2003). J. Mol. Biol. 330, 419–430.

    Article  CAS  Google Scholar 

  • Chang, G., and Roth, C. B. (2001). Science 293, 1793–1800.

    Article  CAS  Google Scholar 

  • Choi, K. H., Chen, C. J., Kriegler, M., and Roninson, I. B. (1988). Cell 53, 519–529.

    Article  CAS  Google Scholar 

  • Davidson, A. L., and Chen, J. (2004). Annu. Rev. Biochem. 73, 241–268.

    Article  CAS  Google Scholar 

  • De Rivoyre, M., Bonino, F., Ruel, L., Bidet, M., Therond, P., and Mus-Veteau, I. (2005). FEBS Lett. 579, 1529–1533.

    Article  CAS  Google Scholar 

  • Ecker, G., Huber, M., Schmid, D., and Chiba, P. (1999). Mol. Pharmacol. 56, 791–796.

    CAS  Google Scholar 

  • Exner, O. (1973). Prog. Phys. Org. Chem. 10, 411–482.

    CAS  Google Scholar 

  • Figler, R. A., Omote, H., Nakamoto, R. K., and Al-Shawi, M. K. (2000). Arch. Biochem. Biophys. 376, 34–46.

    Article  CAS  Google Scholar 

  • Flewelling, R. F., and Hubbell, W. L. (1986). Biophys. J. 49, 531–540.

    CAS  Google Scholar 

  • Gottesman, M. M., and Pastan, I. (1993). Annu. Rev. Biochem. 62, 385–427.

    Article  CAS  Google Scholar 

  • Holland, I. B., and Blight, M. A. (1999). J. Mol. Biol. 293, 381–399.

    Article  CAS  Google Scholar 

  • Hung, L. W., Wang, I. X., Nikaido, K., Liu, P. Q., Ames, G. F.-L., and Kim, S. H. (1998). Nature 396, 703–707.

    Article  CAS  Google Scholar 

  • Hyde, S. C., Emsley, P., Hartshorn, M. J., Mimmack, M. M., Gileadi, U., Pearce, S. R., Gallagher, M. P., Gill, D. R., Hubbard, R. E., and Higgins, C. F. (1990). Nature 346, 362–365.

    Article  CAS  Google Scholar 

  • Kioka, N., Tsubota, J., Kakehi, Y., Komano, T., Gottesman, M. M., Pastan, I., and Ueda, K. (1989). Biochem. Biophys. Res. Commun. 162, 224–231.

    Article  CAS  Google Scholar 

  • Lee, S. H., and Altenberg, G. A. (2003a). Biochem. Biophys. Res. Commun. 306, 644–649.

    Article  CAS  Google Scholar 

  • Lee, S. H., and Altenberg, G. A. (2003b). Biochem. J. 370, 357–360.

    Article  CAS  Google Scholar 

  • Leslie, E. M., Deeley, R. G., and Cole, S. P. (2005). Toxicol. Appl. Pharmacol. 204, 216–237.

    Article  CAS  Google Scholar 

  • Litman, T., Skovsgaard, T., and Stein, W. D. (2003). J. Pharmacol. Exp. Ther. 307, 846–853.

    Article  CAS  Google Scholar 

  • Loo, T. W., Bartlett, M. C., and Clarke, D. M. (2004a). J. Biol. Chem. 279, 7692–7697.

    Article  CAS  Google Scholar 

  • Loo, T. W., Bartlett, M. C., and Clarke, D. M. (2004b). J. Biol. Chem. 279, 18232–18238.

    Article  CAS  Google Scholar 

  • Moiseenkova, V. Y., Hellmich, H. L., and Christensen, B. N. (2003). Biochem. Biophys. Res. Commun. 310, 196–201.

    Article  CAS  Google Scholar 

  • Muller, M., Bakos, E., Welker, E., Varadi, A., Germann, U. A., Gottesman, M. M., Morse, B. S., Roninson, I. B., and Sarkadi, B. (1996). J. Biol. Chem. 271, 1877–1883.

    Article  CAS  Google Scholar 

  • Nakamoto, R. K., Ketchum, C. J., and Al-Shawi, M. K. (1999). Annu. Rev. Biophys. Biomol. Struct. 28, 205–234.

    Article  CAS  Google Scholar 

  • Omote, H., and Al-Shawi, M. K. (2002). J. Biol. Chem. 277, 45688–45694.

    Article  CAS  Google Scholar 

  • Omote, H., Figler, R. A., Polar, M. K., and Al-Shawi, M. K. (2004). Biochemistry 43, 3917–3928.

    Article  CAS  Google Scholar 

  • Pisani, D. F., Rivoyre, M. D., Ruel, L., Bonino, F., Bidet, M., Dechesne, C. A., and Mus-Veteau, I. (2005). Biochem. Biophys. Res. Commun. 331, 552–556.

    Article  CAS  Google Scholar 

  • Polgar, O., and Bates, S. E. (2005). Biochem. Soc. Trans. 33, 241–245.

    Article  CAS  Google Scholar 

  • Ramachandra, M., Ambudkar, S. V., Gottesman, M. M., Pastan, I., and Hrycyna, C. A. (1996). Mol. Biol. Cell 7, 1485–1498.

    CAS  Google Scholar 

  • Ramachandran, G. N., and Sasisekharan, V. (1968). Adv. Protein. Chem. 23, 283–438.

    Article  CAS  Google Scholar 

  • Rao, U. S. (1995). J. Biol. Chem. 270, 6686–6690.

    Article  CAS  Google Scholar 

  • Rao, U. S., and Nuti, S. L. (2003). J. Biol. Chem. 278, 46576–46582.

    Article  CAS  Google Scholar 

  • Romsicki, Y., and Sharom, F. J. (1999). Biochemistry 38, 6887–6896.

    Article  CAS  Google Scholar 

  • Ruth, A., Stein, W. D., Rose, E., and Roninson, I. B. (2001). Biochemistry 40, 4332–4339.

    Article  CAS  Google Scholar 

  • Safa, A. R., Stern, R. K., Choi, K., Agresti, M., Tamai, I., Mehta, N. D., and Roninson, I. B. (1990). Proc. Natl. Acad. Sci. USA 87, 7225–7229.

    CAS  Google Scholar 

  • Sauna, Z. E., and Ambudkar, S. V. (2001). J. Biol. Chem. 276, 11653–11661.

    Article  CAS  Google Scholar 

  • Seelig, A. (1998). Eur. J. Biochem. 251, 252–261.

    Article  CAS  Google Scholar 

  • Seelig, A., Blatter, X. L., and Wohnsland, F. (2000). Int. J. Clin. Pharmacol. Ther. 38, 111–121.

    CAS  Google Scholar 

  • Seelig, A., and Landwojtowicz, E. (2000). Eur. J. Pharm. Sci. 12, 31– 40.

    Article  CAS  Google Scholar 

  • Senior, A. E., Al-Shawi, M. K., and Urbatsch, I. L. (1995a). FEBS Lett. 377, 285–289.

    Article  CAS  Google Scholar 

  • Senior, A. E., Al-Shawi, M. K., and Urbatsch, I. L. (1995b). J. Bioenerg. Biomembr. 27, 31–36.

    Article  CAS  Google Scholar 

  • Shapiro, A. B., Corder, A. B., and Ling, V. (1997). Eur. J. Biochem. 250, 115–121.

    Article  CAS  Google Scholar 

  • Shapiro, A. B., Fox, K., Lam, P., and Ling, V. (1999). Eur. J. Biochem. 259, 841–850.

    Article  CAS  Google Scholar 

  • Shapiro, A. B., and Ling, V. (1995). J. Biol. Chem. 270, 16167–16175.

    Article  CAS  Google Scholar 

  • Shapiro, A. B., and Ling, V. (1997a). Eur. J. Biochem. 250, 122–129.

    Article  CAS  Google Scholar 

  • Shapiro, A. B., and Ling, V. (1997b). Eur. J. Biochem. 250, 130–137.

    Article  CAS  Google Scholar 

  • Shapiro, A. B., and Ling, V. (1998). Eur. J. Biochem. 254, 181–188.

    Article  CAS  Google Scholar 

  • Sharom, F. J. (1997). J. Membr. Biol. 160, 161–175.

    Article  CAS  Google Scholar 

  • Sharom, F. J., Yu, X., and Doige, C. A. (1993). J. Biol. Chem. 268, 24197–24202.

    CAS  Google Scholar 

  • Shilling, R. A., Balakrishnan, L., Shahi, S., Venter, H., and van Veen, H. W. (2003). Int. J. Antimicrob. Agents 22, 200–204.

    Article  CAS  Google Scholar 

  • Stein, W. D., Cardarelli, C., Pastan, I., and Gottesman, M. M. (1994). Mol. Pharmacol. 45, 763–772.

    CAS  Google Scholar 

  • Stenham, D. R., Campbell, J. D., Sansom, M. S., Higgins, C. F., Kerr, I. D., and Linton, K. J. (2003). FASEB J. 17, 2287–2289.

    CAS  Google Scholar 

  • Tu, B. P., and Weissman, J. S. (2002). Mol. Cell. 10, 983–994.

    Article  CAS  Google Scholar 

  • Urbatsch, I. L., Al-Shawi, M. K., and Senior, A. E. (1994). Biochemistry 33, 7069–7076.

    Article  CAS  Google Scholar 

  • Victor, K. G., and Cafiso, D. S. (2001). Biophys. J. 81, 2241–2250.

    Article  CAS  Google Scholar 

  • Yusa, K., and Tsuruo, T. (1989). Cancer Res. 49, 5002–5006.

    CAS  Google Scholar 

  • Zeng, G. F., Pypaert, M., and Slayman, C. L. (2004). J. Biol. Chem. 279, 3003–3013.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Shawi, M.K., Omote, H. The Remarkable Transport Mechanism of P-Glycoprotein: A Multidrug Transporter. J Bioenerg Biomembr 37, 489–496 (2005). https://doi.org/10.1007/s10863-005-9497-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-005-9497-5

Key Words

Navigation