Skip to main content

Advertisement

Log in

Calcium orthophosphates in dentistry

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Dental caries, also known as tooth decay or a cavity, remains a major public health problem in the most communities even though the prevalence of disease has decreased since the introduction of fluorides for dental care. Therefore, biomaterials to fill dental defects appear to be necessary to fulfill customers’ needs regarding the properties and the processing of the products. Bioceramics and glass–ceramics are widely used for these purposes, as dental inlays, onlays, veneers, crowns or bridges. Calcium orthophosphates belong to bioceramics but they have some specific advantages over other types of bioceramics due to a chemical similarity to the inorganic part of both human and mammalian bones and teeth. Therefore, calcium orthophosphates (both alone and as components of various formulations) are used in dentistry as both dental fillers and implantable scaffolds. This review provides brief information on calcium orthophosphates and describes in details current state-of-the-art on their applications in dentistry and dentistry-related fields. Among the recognized dental specialties, calcium orthophosphates are most frequently used in periodontics; however, the majority of the publications on calcium orthophosphates in dentistry are devoted to unspecified “dental” fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lanfranco LP, Eggers S. Caries through time: an anthropological overview. In: Li MY, editor. Contemporary approach to dental caries. InTech: Rijeka; 2012. p. 3–34.

    Google Scholar 

  2. Wang W, Zeng XL, Liu W. Dental caries in ancient Chinese in Xia Dynasty. Zhonghua Kou Qiang Yi Xue Za Zhi. 2008;43:308–10 (in Chinese).

    Google Scholar 

  3. Bellagarda G. Dental caries and their treatment in the writings of the ancients. Minerva Med. 1965;56:892–903 (in Italian).

    CAS  Google Scholar 

  4. Fujita H. Dental caries in Japanese human skeletal remains. J Oral Biosci. 2009;51:105–14.

    Article  Google Scholar 

  5. Corbett ME, Moore WJ. Distribution of dental caries in ancient British populations. 1. Anglo-Saxon period. Caries Res. 1971;5:151–68.

    Article  Google Scholar 

  6. Corbett ME, Moore WJ. Distribution of dental caries in ancient British populations. II. Iron age, Romano-British and Mediaeval periods. Caries Res. 1973;7:139–53.

    Article  Google Scholar 

  7. Corbett ME, Moore WJ. Distribution of dental caries in ancient British populations. III. The 17th century. Caries Res. 1975;9:163–75.

    Article  Google Scholar 

  8. Corbett ME, Moore WJ. Distribution of dental caries in ancient British populations. IV. The 19th century. Caries Res. 1976;10:401–14.

    Article  CAS  Google Scholar 

  9. Kerr NW. The prevalence and pattern of distribution of root caries in a Scottish medieval population. J Dent Res. 1990;69:857–60.

    Article  CAS  Google Scholar 

  10. LeGeros RZ. Calcium phosphates in demineralization/remineralization processes. J Clin Dent. 1999;10:65–73.

    Google Scholar 

  11. Dowd FJ. Saliva and dental caries. Dent Clin North Am. 1999;43:579–97.

    CAS  Google Scholar 

  12. Fejerskov O, Kidd E, editors. Dental caries: the disease and its clinical management. 2nd ed. Oxford: Wiley-Blackwell; 2008. p. 640.

    Google Scholar 

  13. Mjör IA, Toffenetti F. Secondary caries: a literature review with case reports. Quintessence Int. 2000;31:165–79.

    Google Scholar 

  14. Eccles JD. Dental erosion of nonindustrial origin. A clinical survey and classification. J Prosthet Dent. 1979;42:649–53.

    Article  CAS  Google Scholar 

  15. Lussi A, editor. Dental erosion: from diagnosis to therapy. Basel: Karger; 2006. p. 219.

    Google Scholar 

  16. Höland W, Schweiger M, Watzke R, Peschke A, Kappert H. Ceramics as biomaterials for dental restoration. Expert Rev Med Dev. 2008;5:729–45.

    Article  Google Scholar 

  17. Dorozhkin SV. Calcium orthophosphates as bioceramics: state of the art. J Funct Biomater. 2010;1:22–107.

    Article  CAS  Google Scholar 

  18. Dorozhkin SV. Medical application of calcium orthophosphate bioceramics. BIO. 2011;1:1–51.

    Article  Google Scholar 

  19. Widström E, Birn H, Haugejorden O, Sundberg H. Fear of amalgam: dentists’ experiences in the Nordic countries. Int Dent J. 1992;42:65–70.

    Google Scholar 

  20. Thompson JY, Stoner BR, Piascik JR. Ceramics for restorative dentistry: critical aspects for fracture and fatigue resistance. Mater Sci Eng, C. 2007;27:565–9.

    Article  CAS  Google Scholar 

  21. Cravens JE. Lacto-phosphate of lime; pathology and treatment of exposed dental pulps and sensitive dentine. Dent Cosmos. 1876;18:463–9; discussion 469–476.

    Google Scholar 

  22. Pendleton LW. The lacto-phosphate of lime. Trans Maine Med Assoc. 1873;4:313–8.

    Google Scholar 

  23. Reynolds EC. Calcium phosphate-based remineralization systems: scientific evidence? Aust Dent J. 2008;53:268–73.

    Article  CAS  Google Scholar 

  24. Dorozhkin SV. Calcium orthophosphates in nature, biology and medicine. Materials. 2009;2:399–498.

    Article  CAS  Google Scholar 

  25. Dorozhkin SV. Calcium orthophosphates: occurrence, properties, biomineralization, pathological calcification and biomimetic applications. Biomatter. 2011;1:121–64.

    Article  Google Scholar 

  26. LeGeros RZ. Calcium phosphates in oral biology and medicine. Basel: Karger; 1991. p. 210.

    Google Scholar 

  27. Elliott JC. Structure and chemistry of the apatites and other calcium orthophosphates. In: Studies in inorganic chemistry, vol. 18. Amsterdam: Elsevier; 1994. p. 389.

  28. Dorozhkin SV. Calcium orthophosphates: applications in nature, biology, and medicine. Singapore: Pan Stanford; 2012. p. 850.

    Book  Google Scholar 

  29. http://en.wikipedia.org/wiki/Dentistry. Accessed Oct 2012.

  30. http://en.wikipedia.org/wiki/Dental_public_health. Accessed Oct 2012.

  31. http://en.wikipedia.org/wiki/Endodontics. Accessed Oct 2012.

  32. http://en.wikipedia.org/wiki/Specialty_(dentistry). Accessed Oct 2012.

  33. Friedman CD, Constantino PD, Jones K, Chow LC, Pelzer H, Sisson G. Hydroxyapatite cement. II. Obliteration and reconstruction of the cat frontal sinus. Arch Otolaryngol Head Neck Surg. 1991;117:385–9.

    Article  CAS  Google Scholar 

  34. Reddi SP, Stevens MR, Kline SN, Villanueva P. Hydroxyapatite cement in craniofacial trauma surgery, indications and early experience. J Cran Maxillofac Trauma. 1999;5:7–12.

    CAS  Google Scholar 

  35. Friedman CD, Costantino PD, Synderman CH, Chow LC, Takagi S. Reconstruction of the frontal sinus and frontofacial skeleton with hydroxyapatite cement. Arch Facial Plast Surg. 2000;2:124–9.

    Article  CAS  Google Scholar 

  36. Smartt JM, Karmacharya J, Gannon FH, Ong G, Jackson O, Bartlett SP, Poser RD, Kirschner RE. Repair of the immature and mature craniofacial skeleton with a carbonated calcium phosphate cement: assessment of biocompatibility, osteoconductivity and remodeling capacity. Plast Reconstr Surg. 2005;115:1642–50.

    Article  CAS  Google Scholar 

  37. Kuemmerle JM, Oberle A, Oechslin C, Bohner M, Frei C, Boecken I, von Rechenberg B. Assessment of the suitability of a new brushite calcium phosphate cement for cranioplasty—an experimental study in sheep. J Cran Maxillofac Surg. 2005;33:37–44.

    Article  Google Scholar 

  38. Luaces-Rey R, García-Rozado A, Crespo-Escudero JL, Seijas BP, Arenaz-Búa J, López-Cedrún JL. Use of carbonated calcium phosphate bone cement and resorbable plates for the treatment of frontal sinus fractures: two case reports. J Plast Reconstr Aesthet Surg. 2009;62:272–3.

    Article  Google Scholar 

  39. Tamimi F, Torres J, Cabarcos EL, Bassett DC, Habibovic P, Luceron E, Barralet JE. Minimally invasive maxillofacial vertical bone augmentation using brushite based cements. Biomaterials. 2009;30:208–16.

    Article  CAS  Google Scholar 

  40. Abe T, Anan M, Kamida T, Fujiki M. Surgical technique for anterior skull base reconstruction using hydroxyapatite cement and titanium mesh. Acta Neurochir. 2009;151:1337–8.

    Article  Google Scholar 

  41. Benson AG, Djalilian HR. Complications of hydroxyapatite bone cement reconstruction of retrosigmoid craniotomy: two cases. Ear Nose Throat J. 2009;88:E1–4.

    Google Scholar 

  42. Lee DW, Kim JY, Lew DH. Use of rapidly hardening hydroxyapatite cement for facial contouring surgery. J Craniofac Surg. 2010;21:1084–8.

    Article  Google Scholar 

  43. Singh KA, Burstein FD, Williams JK. Use of hydroxyapatite cement in pediatric craniofacial reconstructive surgery: strategies for avoiding complications. J Craniofac Surg. 2010;21:1130–5.

    Article  Google Scholar 

  44. Bambakidis NC, Munyon C, Ko A, Selman WR, Megerian CA. A novel method of translabyrinthine cranioplasty using hydroxyapatite cement and titanium mesh: a technical report. Skull Base. 2010;20:157–61.

    Article  Google Scholar 

  45. Huang MS, Wu HD, Teng NC, Peng BY, Wu JY, Chang WJ, Yang JC, Chen CC, Lee SY. In vivo evaluation of poorly crystalline hydroxyapatite-based biphasic calcium phosphate bone substitutes for treating dental bony defects. J Dent Sci. 2010;5:100–8.

    Article  Google Scholar 

  46. Sanada Y, Fujinaka T, Yoshimine T, Kato A. Optimal reconstruction of the bony defect after frontotemporal craniotomy with hydroxyapatite cement. J Clin Neurosci. 2011;18:280–2.

    Article  Google Scholar 

  47. http://en.wikipedia.org/wiki/Orthodontics. Accessed Oct 2012.

  48. http://en.wikipedia.org/wiki/Prosthodontics. Accessed Oct 2012.

  49. Xie C, Lu H, Li W, Chen FM, Zhao YM. The use of calcium phosphate-based biomaterials in implant dentistry. J Mater Sci Mater Med. 2012;23:853–62.

    Article  CAS  Google Scholar 

  50. McDonagh MS, Kleijnen J, Whiting PF, Wilson PM, Sutton AJ, Chestnutt I, Cooper J, Misso K, Bradley M, Treasure E. Systematic review of water fluoridation. Brit Med J. 2000;321:855–9.

    Article  CAS  Google Scholar 

  51. Roveri N, Foresti E, Lelli M, Lesci IG. Recent advancements in preventing teeth health hazard: the daily use of hydroxyapatite instead of fluoride. Recent Pat Biomed Eng. 2009;2:197–215.

    Article  CAS  Google Scholar 

  52. Fischer RB, Muhler JC, Ring CE. X-ray study of fluorapatite formation during the fluoride treatment of powdered dental enamel. J Dent Res. 1956;35:773–7.

    Article  CAS  Google Scholar 

  53. http://en.wikipedia.org/wiki/Dentifrice. Accessed Oct 2012.

  54. McClendon JF, Carpousis A. Prevention of dental caries by brushing the teeth with powdered fluorapatite. J Dent Res. 1945;24:199.

    Google Scholar 

  55. Shern RJ, Couet KM, Chow LC, Brown WE. Effects of sequential calcium phosphate–fluoride rinses on fluoride uptake in rats. J Dent Res. 1979;58(Spec. Iss. B):1023.

    CAS  Google Scholar 

  56. Shern RJ, Chow LC, Couet KM, Kingman A, Brown WE. Effects of sequential calcium phosphate–fluoride rinses on dental plaque, staining, fluoride uptake, and caries in rats. J Dent Res. 1984;63:1355–9.

    Article  CAS  Google Scholar 

  57. Schreiber CT, Shern RJ, Chow LC, Kingman A. Effects of rinses with an acidic calcium phosphate solution on fluoride uptake, caries, and in situ plaque pH in rats. J Dent Res. 1988;67:959–63.

    Article  CAS  Google Scholar 

  58. Kani T, Kani M, Isozaki A, Kato H, Fukuoka Y, Ohashi T, Tokumoto T. The effect to apatite-containing dentifrices on artificial caries lesions. J Dent Health. 1988;38:364–5.

    Article  Google Scholar 

  59. Kani T, Kani M, Isozaki A, Shimatani H, Ohashi T, Tokumoto T. Effect of apatite-containing dentifrices on dental caries in school children. J Dent Health. 1989;39:104–9.

    Article  Google Scholar 

  60. Okashi T, Kani T, Isozaki A, Nishida A, Shintani H, Tokumoto T, Ishizu E, Kuwahara Y, Kani M. Remineralization of artificial caries lesions by hydroxyapatite. J Dent Health. 1991;41:214–23.

    Article  Google Scholar 

  61. Gaffar A, Blake-Haskins J, Mellberg J. In vivo studies with a dicalcium phosphate dihydrate/MFP system for caries prevention. Int Dent J. 1993;43(Suppl. 1):81–8.

    CAS  Google Scholar 

  62. Sullivan RJ, Charig A, Blake-Haskins J, Zhang YP, Miller SM, Strannick M, Gaffar A, Margolis HC. In vivo detection of calcium from dicalcium phosphate dihydrate dentifrices in demineralized human enamel and plaque. Adv Dent Res. 1997;11:380–7.

    Article  CAS  Google Scholar 

  63. Kodaka T, Kobori M, Hirayama A, Masayuki A. Abrasion of human enamel by brushing with a commercial dentifrice containing hydroxyapatite crystals in vitro. J Electron Microsc. 1999;48:167–72.

    Article  CAS  Google Scholar 

  64. Hicks MJ, Flaitz CM. Enamel caries formation and lesion progression with a fluoride dentifrice and a calcium–phosphate containing fluoride dentifrice: a polarized light microscopic study. ASDC J Dent Child. 2000;67:21–8.

    CAS  Google Scholar 

  65. Sullivan RJ, Masters J, Cantore R, Roberson A, Petrou I, Stranick M, Goldman H, Guggenheim B, Gaffar A. Development of an enhanced anticaries efficacy dual component dentifrice containing sodium fluoride and dicalcium phosphate dihydrate. Am J Dent. 2001;14(Spec. Iss. 5):3A–11A.

    Google Scholar 

  66. Boneta AE, Neesmith A, Mankodi S, Berkowitz HJ, Sánchez L, Mostler K, Stewart B, Sintes J, de Vizio W, Petrone ME, Volpe AR, Zhang YP, McCool JJ, Bustillo E, Proskin HM. The enhanced anticaries efficacy of a sodium fluoride and dicalcium phosphate dihydrate dentifrice in a dual-chambered tube. A 2-year caries clinical study on children in the United States of America. Am J Dent. 2001;14(Spec. Iss. 5):13A–7A.

    Google Scholar 

  67. Silva MFDA, Melo EVDS, Stewart B, de Vizio W, Sintes JL, Petrone ME, Volpe AR, Zhang YP, McCool JJ, Proskin HM. The enhanced anticaries efficacy of a sodium fluoride and dicalcium phosphate dihydrate dentifrice in a dual-chambered tube. A 2-year caries clinical study on children in Brazil. Am J Dent. 2001;14(Spec. Iss. 5):19A–23A.

    Google Scholar 

  68. Niwa M, Sato T, Li W, Aoki H, Aoki H, Daisaku T. Polishing and whitening properties of toothpaste containing hydroxyapatite. J Mater Sci Mater Med. 2001;12:277–81.

    Article  CAS  Google Scholar 

  69. Sintes JL, Elías-Boneta A, Stewart B, Volpe AR, Lovett J. Anticaries efficacy of a sodium monofluorophosphate dentifrice containing xylitol in a dicalcium phosphate dihydrate base. A 30-month caries clinical study in Costa Rica. Am J Dent. 2002;15:215–9.

    Google Scholar 

  70. Kim BI, Jeong SH, Jang SO, Kim KN, Kwon HK, Park YD. Tooth whitening effect of toothpastes containing nano-hydroxyapatite. Key Eng Mater. 2006;309–311:541–4.

    Google Scholar 

  71. Jeong SH, Jang SO, Kim KN, Kwon HK, Park YD, Kim BI. Remineralization potential of new toothpaste containing nano-hydroxyapatite. Key Eng Mater. 2006;309–311:537–40.

    Article  Google Scholar 

  72. Lv K, Zhang J, Meng X, Li X. Remineralization effect of the nano-HA toothpaste on artificial caries. Key Eng Mater. 2007;330–332:267–70.

    Article  Google Scholar 

  73. Jeong SH, Hong SJ, Choi CH, Kim BI. Effect of new dentifrice containing nano-sized carbonated apatite on enamel remineralization. Key Eng Mater. 2007;330–332:291–4.

    Article  Google Scholar 

  74. Roveri N, Battistella E, Bianchi CL, Foltran I, Foresti E, Iafisco M, Lelli M, Naldoni A, Palazzo B, Rimondini L. Surface enamel remineralization: biomimetic apatite nanocrystals and fluoride ions different effects. J Nanomater. 2009;746383:9.

    Google Scholar 

  75. Kim SH, Park JB, Lee CW, Koo KT, Kim TI, Seol YJ, Lee YM, Ku Y, Chung CP, Rhyu IC. The clinical effects of a hydroxyapatite containing toothpaste for dentine hypersensitivity. J Korean Acad Periodontol. 2009;39:87–94.

    Article  Google Scholar 

  76. Tschoppe P, Zandim DL, Martus P, Kielbassa AM. Enamel and dentine remineralization by nano-hydroxyapatite toothpastes. J Dent. 2011;39:430–7.

    Article  CAS  Google Scholar 

  77. Najibfard K, Chedjieu I, Ramalingam K, Amaechi BT. Remineralization of early caries by a nano-hydroxyapatite dentifrice. J Clin Dent. 2011;22:139–43.

    CAS  Google Scholar 

  78. Wang CJ, Zhang YF, Wei J, Wei SC. Repair of artificial enamel lesions by nano fluorapatite paste containing fluorin. J Clin Rehabil Tissue Eng Res. 2011;15:6346–50.

    CAS  Google Scholar 

  79. Kovtun A, Kozlova D, Ganesan K, Biewald C, Seipold N, Gaengler P, Arnold WH, Epple M. Chlorhexidine-loaded calcium phosphate nanoparticles for dental maintenance treatment: combination of mineralising and antibacterial effects. RSC Adv. 2012;2:870–5.

    Article  CAS  Google Scholar 

  80. Browning WD, Cho SD, Deschepper EJ. Effect of a nano-hydroxyapatite paste on bleaching-related tooth sensitivity. J Esthet Restor Dent. 2012;24:268–76.

    Article  Google Scholar 

  81. Hannig C, Basche S, Burghardt T, Al-Ahmad A, Hannig M. Influence of a mouthwash containing hydroxyapatite microclusters on bacterial adherence in situ. Clin Oral Investig. 2012;. doi:10.1007/s00784-012-0781-6.

    Google Scholar 

  82. Pickel FD, Bilotti A. The effects of a chewing gum containing dicalcium phosphate on salivary calcium and phosphate. Ala J Med Sci. 1965;2:286–7.

    CAS  Google Scholar 

  83. Finn SB, Jamison HC. The effect of a dicalcium phosphate chewing gum on caries incidence in children: 30-month results. J Am Dent Assoc. 1967;74:987–95.

    CAS  Google Scholar 

  84. Finn SB. The role of a dicalcium phosphate chewing gum in the control of human dental caries. Int Dent J. 1967;17:339–52.

    CAS  Google Scholar 

  85. Richardson AS, Hole LW, McCombie F, Kolthammer J. Anticariogenic effect of dicalcium phosphate dihydrate chewing gum: results after two years. J Can Dent Assoc. 1972;38:213–8.

    CAS  Google Scholar 

  86. Wilson CJ. The effect of calcium sucrose phosphates chewing gum on caries incidence in children. J Wis Dent Assoc. 1975;51:521–5.

    CAS  Google Scholar 

  87. Chow LC, Takagi S, Shern RJ, Chow TH, Takagi KK, Sieck BA. Effects on whole saliva of chewing gums containing calcium phosphates. J Dent Res. 1994;73:26–32.

    Article  CAS  Google Scholar 

  88. Vogel GL, Zhang Z, Carey CM, Ly A, Chow LC, Proskin HM. Composition of plaque and saliva following a sucrose challenge and use of an α-tricalcium-phosphate-containing chewing gum. J Dent Res. 1998;77:518–24; erratum: 1575.

    Google Scholar 

  89. Vogel GL, Zhang Z, Carey CM, Ly A, Chow LC, Proskin HM. Composition of plaque and saliva following use of an α-tricalcium-phosphate-containing chewing gum and a subsequent sucrose challenge. J Dent Res. 2000;79:58–62.

    Article  CAS  Google Scholar 

  90. Shen P, Cai F, Nowicki A, Vincent J, Reynolds EC. Remineralization of enamel subsurface lesions by sugar-free chewing gum containing casein phosphopeptide–amorphous calcium phosphate. J Dent Res. 2001;80:2066–70.

    Article  CAS  Google Scholar 

  91. Iijima Y, Cai F, Shen P, Walker G, Reynolds C, Reynolds EC. Acid resistance of enamel subsurface lesions remineralized by a sugar-free chewing gum containing casein phosphopeptide–amorphous calcium phosphate. Caries Res. 2004;38:551–6.

    Article  CAS  Google Scholar 

  92. Itthagarun A, King NM, Yiu C, Dawes C. The effect of chewing gums containing calcium phosphates on the remineralization of artificial caries-like lesions in situ. Caries Res. 2005;39:251–4.

    Article  CAS  Google Scholar 

  93. Cai F, Manton DJ, Shen P, Walker GD, Cross KJ, Yuan Y, Reynolds C, Reynolds EC. Effect of addition of citric acid and casein phosphopeptide–amorphous calcium phosphate to a sugar-free chewing gum on enamel remineralization in situ. Caries Res. 2007;41:377–83.

    Article  CAS  Google Scholar 

  94. Morgan MV, Adams GG, Bailey DL, Tsao CE, Fischman SL, Reynolds EC. The anticariogenic effect of sugar-free gum containing CPP–ACP nanocomplexes on approximal caries determined using digital bitewing radiography. Caries Res. 2008;42:171–84.

    Article  CAS  Google Scholar 

  95. Thaweboon S, Nakornchai S, Miyake Y, Yanagisawa T, Thaweboon B, Sooampon S, Lexomboon D. Remineralization of enamel subsurface lesions by xylitol chewing gum containing funoran and calcium hydrogenphosphate. Southeast Asian J Trop Med Public Health. 2009;40:345–53.

    CAS  Google Scholar 

  96. Kim MY, Kwon HK, Choi CH, Kim BI. Combined effects of nano-hydroxyapatite and NaF on remineralization of early caries lesion. Key Eng Mater. 2007;330–332:1347–50.

    Article  Google Scholar 

  97. Lu K, Meng X, Zhang J, Li X, Zhou M. Inhibitory effect of synthetic nano-hydroxyapatite on dental caries. Key Eng Mater. 2007;336–338:1538–41.

    Article  Google Scholar 

  98. Zhen T, Hongkun W, Anchun M, Zhiqin C, Yubao L. Effect of apatite nanoparticles on remineralization of the demineralized human dentin. Key Eng Mater. 2007;330–332:1381–4.

    Google Scholar 

  99. Rimondini L, Palazzo B, Iafisco M, Canegallo L, Demarosi F, Merlo M, Roveri N. The remineralizing effect of carbonate-hydroxyapatite nanocrystals on dentine. Mater Sci Forum. 2007;539–543:602–5.

    Article  Google Scholar 

  100. Roveri N, Battistella E, Foltran I, Foresti E, Iafisco M, Lelli M, Palazzo B, Rimondini L. Synthetic biomimetic carbonate-hydroxyapatite nanocrystals for enamel remineralization. Adv Mater Res. 2008;47–50:821–4.

    Article  Google Scholar 

  101. Huang SB, Gao SS, Yu HY. Effect of nano-hydroxyapatite concentration on remineralization of initial enamel lesion in vitro. Biomed Mater. 2009;4:034104.

    Article  CAS  Google Scholar 

  102. Lv KL, Yuan HW, Meng XC, Li XY. Remineralized evaluation of nano-hydroxyapatite to artificial caries. Adv Mater Res. 2010;105–106:576–9.

    Article  CAS  Google Scholar 

  103. Huang S, Gao S, Cheng L, Yu H. Remineralization potential of nano-hydroxyapatite on initial enamel lesions: an in vitro study. Caries Res. 2011;45:460–8.

    Article  CAS  Google Scholar 

  104. Chow LC, Takagi S. Remineralization of root lesions with concentrated calcium and phosphate solutions. Dent Mater J. 1995;14:31–6.

    Article  CAS  Google Scholar 

  105. Reynolds EC. Remineralization of enamel subsurface lesions by casein phosphopeptide–stabilized calcium phosphate solutions. J Dent Res. 1997;76:1587–95.

    Article  CAS  Google Scholar 

  106. Singh ML, Papas AS. Long-term clinical observation of dental caries in salivary hypofunction patients using a supersaturated calcium–phosphate remineralizing rinse. J Clin Dent. 2009;20:87–92.

    Google Scholar 

  107. Lee HJ, Min JH, Choi CH, Kwon HG, Kim BI. Remineralization potential of sports drink containing nano-sized hydroxyapatite. Key Eng Mater. 2007;330–332:275–8.

    Article  Google Scholar 

  108. Min JH, Kwon HK, Kim BI. The addition of nano-sized hydroxyapatite to a sports drink to inhibit dental erosion—in vitro study using bovine enamel. J Dent. 2011;39:629–35.

    Article  CAS  Google Scholar 

  109. Luo J, Ning T, Cao Y, Zhu X, Xu X, Tang X, Chu CH, Li Q. Biomimic enamel remineralization by hybridization calcium- and phosphate-loaded liposomes with amelogenin-inspired peptide. Key Eng Mater. 2012;512–515:1727–30.

    Article  CAS  Google Scholar 

  110. Jandt KD. Probing the future in functional soft drinks on the nanometre scale—towards tooth friendly soft drinks. Trends Food Sci Technol. 2006;17:263–71.

    Article  CAS  Google Scholar 

  111. Lippert F, Parker DM, Jandt KD. In situ remineralisation of surface softened human enamel studied with AFM nanoindentation. Surf Sci. 2004;553:105–14.

    Article  CAS  Google Scholar 

  112. Lippert F, Parker DM, Jandt KD. In vitro demineralization/remineralization cycles at human tooth enamel surfaces investigated by AFM and nanoindentation. J Colloid Interface Sci. 2004;280:442–8.

    Article  CAS  Google Scholar 

  113. Lippert F, Parker DM, Jandt KD. Toothbrush abrasion of surface softened enamel studied with tapping mode AFM and AFM nanoindentation. Caries Res. 2004;38:464–72.

    Article  CAS  Google Scholar 

  114. Miloslavich EL. Calcium metabolism in its relation to dental pathology calciprival odontopathia. Int J Orthod Oral Surg Radiogr. 1925;11:111–23.

    Article  Google Scholar 

  115. Nery EB, Lynch KL, Hirthe WM, Mueller KH. Bioceramic implants in surgically produced infrabony defects. J Periodontol. 1975;46:328–47.

    Article  CAS  Google Scholar 

  116. Nery EB, Lynch KL, Rooney GE. Alveolar ridge augmentation with tricalcium phosphate ceramic. J Prosthet Dent. 1978;40:668–75.

    Article  CAS  Google Scholar 

  117. Denissen HW, de Groot K. Immediate dental root implants from synthetic dense calcium hydroxylapatite. J Prosthet Dent. 1979;42:551–6.

    Article  CAS  Google Scholar 

  118. LeGeros RZ. Calcium phosphate materials in restorative dentistry: a review. Adv Dent Res. 1988;2:164–80.

    CAS  Google Scholar 

  119. Kouassi M, Michaïlesco P, Lacoste-Armynot A, Boudeville P. Antibacterial effect of a hydraulic calcium phosphate cement for dental applications. J Endod. 2003;29:100–3.

    Article  Google Scholar 

  120. Mehdawi I, Neel EA, Valappil SP, Palmer G, Salih V, Pratten J, Spratt DA, Young AM. Development of remineralizing, antibacterial dental materials. Acta Biomater. 2009;5:2525–39.

    Article  CAS  Google Scholar 

  121. Koch KA, Brave DG, Nasseh AA. Bioceramic technology: closing the endo-restorative circle, Part I. Dent Today. 2010;29:100–5.

    Google Scholar 

  122. Xu HHK, Sun L, Weir MD, Takagi S, Chow LC, Hockey B. Effects of incorporating nanosized calcium phosphate particles on of properties of whisker-reinforced dental composites. J Biomed Mater Res B (Appl Biomater). 2007;81B:116–25.

    Article  CAS  Google Scholar 

  123. Dickens-Venz SH, Takagi S, Chow LC, Bowen RL, Johnston AD, Dickens B. Physical and chemical properties of resin-reinforced calcium phosphate cements. Dent Mater. 1994;10:100–6.

    Article  CAS  Google Scholar 

  124. Lee YK, Lim BS, Kim CW. Mechanical properties of calcium phosphate based dental filling and regeneration materials. J Oral Rehabil. 2003;30:418–25.

    Article  Google Scholar 

  125. Briak HE, Durand D, Nurit J, Munier S, Pauvert B, Boudeville P. Study of a hydraulic dicalcium phosphate dihydrate/calcium oxide-based cement for dental applications. J Biomed Mater Res. 2002;63:447–53.

    Article  CAS  Google Scholar 

  126. Dickens SH, Flaim GM, Takagi S. Mechanical properties and biochemical activity of remineralizing resin-based Ca–PO4 cements. Dent Mater. 2003;19:558–66.

    Article  CAS  Google Scholar 

  127. Michaïlesco P, Kouassi M, Briak HE, Armynot A, Boudeville P. Antimicrobial activity and tightness of a DCPD–CaO-based hydraulic calcium phosphate cement for root canal filling. J Biomed Mater Res B (Appl Biomater). 2005;74B:760–7.

    Article  CAS  Google Scholar 

  128. Xu HHK, Takagi S, Sun L, Hussain L, Chow LC, Guthrie WF, Yen JH. Development of a nonrigid, durable calcium phosphate cement for use in periodontal bone repair. J Am Dent Assoc. 2006;137:1131–8.

    CAS  Google Scholar 

  129. Sugawara A, Fujikawa K, Takagi S, Chow LC. Histological analysis of calcium phosphate bone grafts for surgically created periodontal bone defects in dogs. Dent Mater J. 2008;27:787–94.

    Article  CAS  Google Scholar 

  130. Wei J, Wang J, Shan W, Liu X, Ma J, Liu C, Fang J, Wei S. Development of fluorapatite cement for dental enamel defects repair. J Mater Sci Mater Med. 2011;22:1607–14.

    Article  CAS  Google Scholar 

  131. Thein-Han W, Liu J, Xu HHK. Calcium phosphate cement with biofunctional agents and stem cell seeding for dental and craniofacial bone repair. Dent Mater. 2012;28:1059–70.

    Article  CAS  Google Scholar 

  132. Yoshikawa M, Hayami S, Tsuji I, Toda T. Histopathological study of a newly developed root canal sealer containing tetracalcium–dicalcium phosphates and 1.0 % chondroitin sulfate. J Endod. 1997;23:162–6.

    Article  CAS  Google Scholar 

  133. Xu HHK, Sun L, Weir MD, Antonucci JM, Yakagi S, Chow LC, Peltz M. Nano DCPA-whisker composites with high strength and Ca and PO4 release. J Dent Res. 2006;85:722–7.

    Article  CAS  Google Scholar 

  134. Xu HHK, Weir MD, Sun L, Takagi S, Chow LC. Effects of calcium phosphate nanoparticles on Ca–PO4 composite. J Dent Res. 2007;86:378–83.

    Article  CAS  Google Scholar 

  135. Xu HHK, Weir MD, Sun L. Nanocomposites with Ca and PO4 release: effects of reinforcement, dicalcium phosphate particle size and silanization. Dent Mater. 2007;23:1482–91.

    Article  CAS  Google Scholar 

  136. Chen MH. Update on dental nanocomposites. J Dent Res. 2010;89:549–60.

    Article  CAS  Google Scholar 

  137. Jean AH, Pouezat JA, Daculsi G. Pulpal response to calcium phosphate materials. In vivo study of calcium phosphate materials in endodontics. Cell Mater. 1993;3:193–200.

    Google Scholar 

  138. Stefanic M, Krnel K, Pribosic I, Kosmac T. Rapid biomimetic deposition of octacalcium phosphate coatings on zirconia ceramics (Y-TZP) for dental implant applications. Appl Surf Sci. 2012;258:4649–56.

    Article  CAS  Google Scholar 

  139. Miura K, Matsui K, Kawai T, Kato Y, Matsui A, Suzuki O, Kamakura S, Echigo S. Octacalcium phosphate collagen composites with titanium mesh facilitate alveolar augmentation in canine mandibular bone defects. Int J Oral Maxillofac Surg. 2012;41:1161–9.

    Article  CAS  Google Scholar 

  140. Sena M, Yamashita Y, Nakano Y, Ohgaki M, Nakamura S, Yamashita K, Takagi Y. Octacalcium phosphate-based cement as a pulp-capping agent in rats. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;97:749–55.

    Article  Google Scholar 

  141. Kamakura S, Sasano Y, Nakamura M, Suzuki O, Ohki H, Kagayama M, Motegi K. Initiation of alveolar ridge augmentation in the rat mandible by subperiosteal implantation of octacalcium phosphate. Arch Oral Biol. 1996;41:1029–38.

    Article  CAS  Google Scholar 

  142. Kamakura S, Sasano Y, Homma H, Suzuki O, Kagayama M, Motegi K. Experimental oral pathology: implantation of octacalcium phosphate nucleates isolated bone formation in rat skull defects. Oral Dis. 2001;7:259–65.

    Article  CAS  Google Scholar 

  143. Yates R, Owens J, Jackson R, Newcombe RG, Addy M. A split-mouth placebo-controlled study to determine the effect of amorphous calcium phosphate in the treatment of dentine hypersensitivity. J Clin Periodontol. 1998;25:687–92.

    Article  CAS  Google Scholar 

  144. Ambrosio AMA, Sahota JS, Khan Y, Laurencin CT. A novel amorphous calcium phosphate polymer ceramic for bone repair: I. Synthesis and characterization. J Biomed Mater Res. 2001;58:295–301.

    Article  CAS  Google Scholar 

  145. Skrtic D, Antonucci JM, Eanes ED. Effect of the monomer and filler system on the remineralizing potential of bioactive dental composites based on amorphous calcium phosphate. Polym Adv Technol. 2001;12:369–79.

    Article  CAS  Google Scholar 

  146. Skrtic D, Antonucci JM, Eanes ED. Amorphous calcium phosphate-based bioactive polymeric composites for mineralized tissue regeneration. J Res Natl Inst Stand Technol. 2003;108:167–82.

    Article  CAS  Google Scholar 

  147. Skrtic D, Antonucci JM, Eanes ED, Eidelman N. Dental composites based on hybrid and surface-modified amorphous calcium phosphates. Biomaterials. 2004;25:1141–50.

    Article  CAS  Google Scholar 

  148. Skrtic D, Antonucci JM. Matrix resin effects on selected physicochemical properties of amorphous calcium phosphate composites. J Bioact Compat Polym. 2005;20:29–49.

    Article  CAS  Google Scholar 

  149. Skrtic D, Antonucci JM, Eanes ED. Improved properties of amorphous calcium phosphate fillers in remineralizing resin composites. Dent Mater. 1996;12:295–301.

    Article  CAS  Google Scholar 

  150. Skrtic D, Antonucci JM. Dental composites based on amorphous calcium phosphate—resin composition/physicochemical properties study. J Biomater Appl. 2007;21:375–93.

    Article  CAS  Google Scholar 

  151. Skrtic D, Hailer AW, Takagi S, Antonucci JM, Eanes ED. Quantitative assessment of the efficacy of amorphous calcium phosphate/methacrylate composites in remineralizing caries-like lesions artificially produced in bovine enamel. J Dent Res. 1996;75:1679–86.

    Article  CAS  Google Scholar 

  152. O’Donnell JNR, Schumacher GE, Antonucci JM, Skrtic D. Adhesion of amorphous calcium phosphate composites bonded to dentin: a study in failure modality. J Biomed Mater Res B (Appl Biomater). 2009;90B:238–49.

    Article  CAS  Google Scholar 

  153. Antonucci JM, O’Donnell JNR, Schumacher GE, Skrtic D. Amorphous calcium phosphate composites and their effect on composite–adhesive–dentin bonding. J Adhes Sci Technol. 2009;23:1133–47.

    Article  CAS  Google Scholar 

  154. Walker GD, Cai F, Shen P, Adams GG, Reynolds C, Reynolds EC. Casein phosphopeptide–amorphous calcium phosphate incorporated into sugar confections inhibits the progression of enamel subsurface lesions in situ. Caries Res. 2010;44:33–40.

    Article  CAS  Google Scholar 

  155. Xu HHK, Moreau JL, Sun L, Chow LC. Nanocomposite containing amorphous calcium phosphate nanoparticles for caries inhibition. Dent Mater. 2011;27:762–9.

    Article  CAS  Google Scholar 

  156. Uysal T, Amasyali M, Koyuturk AE, Sagdic D. Efficiency of amorphous calcium phosphate-containing orthodontic composite and resin modified glass ionomer on demineralization evaluated by a new laser fluorescence device. Eur J Dent. 2009;3:127–34.

    Google Scholar 

  157. Reynolds EC. Anticariogenic complexes of amorphous calcium phosphate stabilized by casein phosphopeptides: a review. Spec Care Dentist. 1998;18:8–16.

    Article  CAS  Google Scholar 

  158. Tung MS, Eichmiller FC. Dental applications of amorphous calcium phosphates. J Clin Dent. 1999;10:1–6.

    CAS  Google Scholar 

  159. Uysal T, Ustdal A, Nur M, Catalbas B. Bond strength of ceramic brackets bonded to enamel with amorphous calcium phosphate-containing orthodontic composite. Eur J Orthod. 2010;32:281–4.

    Article  Google Scholar 

  160. Dunn WJ. Shear bond strength of an amorphous calcium–phosphate-containing orthodontic resin cement. Am J Orthod Dentofac Orthop. 2007;131:243–7.

    Article  Google Scholar 

  161. Keçik D, Çehreli SB, Şar Ç, Ünver B. Effect of acidulated phosphate fluoride and casein phosphopeptide–amorphous calcium phosphate application on shear bond strength of orthodontic brackets. Angle Orthod. 2008;78:129–33.

    Article  Google Scholar 

  162. Foster JA, Berzins DW, Bradley TG. Bond strength of an amorphous calcium phosphate-containing orthodontic adhesive. Angle Orthod. 2008;78:339–44.

    Article  Google Scholar 

  163. Sun W, Zhang F, Guo J, Wu J, Wu W. Effects of amorphous calcium phosphate on periodontal ligament cell adhesion and proliferation in vitro. J Med Biol Eng. 2008;28:107–12.

    Google Scholar 

  164. Uysal T, Ulker M, Baysal A, Usumez S. Microleakage between composite-wire and composite-enamel interfaces of flexible spiral wire retainers. Part 2: comparison of amorphous calcium phosphate-containing adhesive with conventional lingual retainer composite. Eur J Orthod. 2009;31:652–7.

    Article  Google Scholar 

  165. Uysal T, Ulker M, Akdogan G, Ramoglu SI, Yilmaz E. Bond strength of amorphous calcium phosphate-containing orthodontic composite used as a lingual retainer adhesive. Angle Orthod. 2009;79:117–21.

    Article  Google Scholar 

  166. Uysal T, Amasyali M, Ozcan S, Koyuturk AE, Akyol M, Sagdic D. In vivo effects of amorphous calcium phosphate-containing orthodontic composite on enamel demineralization around orthodontic brackets. Aust Dent J. 2010;55:285–91.

    Article  CAS  Google Scholar 

  167. Uysal T, Amasyali M, Koyuturk AE, Ozcan S, Sagdic D. Amorphous calcium phosphate-containing orthodontic composites. Do they prevent demineralisation around orthodontic brackets? Aust Orthod J. 2010;26:10–5.

    Google Scholar 

  168. Bröchner A, Christensen C, Kristensen B, Tranæus S, Karlsson L, Sonnesen L, Twetman S. Treatment of post-orthodontic white spot lesions with casein phosphopeptide–stabilised amorphous calcium phosphate. Clin Oral Invest. 2011;15:369–73.

    Article  Google Scholar 

  169. Antonucci JM, Skrtic D. Fine-tuning of polymeric resins and their interfaces with amorphous calcium phosphate. A strategy for designing effective remineralizing dental composites. Polymers. 2010;2:378–92.

    Article  CAS  Google Scholar 

  170. Beerens MW, van der Veen MH, van Beek H, Ten Cate JM. Effects of casein phosphopeptide amorphous calcium fluoride phosphate paste on white spot lesions and dental plaque after orthodontic treatment: a 3-month follow-up. Eur J Oral Sci. 2010;118:610–7.

    Article  CAS  Google Scholar 

  171. Zhao J, Liu Y, Sun WB, Zhang H. Amorphous calcium phosphate and its application in dentistry. Chem Cent J. 2011;5:40.

    Article  CAS  Google Scholar 

  172. Gupta R, Prakash V. CPP–ACP complex as a new adjunctive agent for remineralisation: a review. Oral Health Prev Dent. 2011;9:151–65.

    Google Scholar 

  173. Zhang Q, Zou J, Yang R, Zhou X. Remineralization effects of casein phosphopeptide–amorphous calcium phosphate crème on artificial early enamel lesions of primary teeth. Int J Paediatr Dent. 2011;21:374–81.

    Article  Google Scholar 

  174. Moreau JL, Sun L, Chow LC, Xu HHK. Mechanical and acid neutralizing properties and bacteria inhibition of amorphous calcium phosphate dental nanocomposite. J Biomed Mater Res B (Appl Biomater). 2011;98B:80–8.

    Article  CAS  Google Scholar 

  175. Fletcher J, Walsh D, Fowler CE, Mann S. Electrospun mats of PVP/ACP nanofibres for remineralization of enamel tooth surfaces. CrystEngComm. 2011;13:3692–7.

    Article  CAS  Google Scholar 

  176. Uysal T, Baysal A, Uysal B, Aydinbelge M, Al-Qunaian T. Do fluoride and casein phosphopeptide–amorphous calcium phosphate affect shear bond strength of orthodontic brackets bonded to a demineralized enamel surface? Angle Orthod. 2011;81:490–5.

    Article  Google Scholar 

  177. Tabrizi A, Cakirer B. A comparative evaluation of casein phosphopeptide–amorphous calcium phosphate and fluoride on the shear bond strength of orthodontic brackets. Eur J Orthod. 2011;33:282–7.

    Article  Google Scholar 

  178. Hamba H, Nikaido T, Inoue G, Sadr A, Tagami J. Effects of CPP–ACP with sodium fluoride on inhibition of bovine enamel demineralization: a quantitative assessment using micro-computed tomography. J Dent. 2011;39:405–13.

    Article  CAS  Google Scholar 

  179. Skrtic D, Antonucci JM. Bioactive polymeric composites for tooth mineral regeneration: physicochemical and cellular aspects. J Funct Biomater. 2011;2:271–307.

    Article  CAS  Google Scholar 

  180. Chow CKW, Wu CD, Evans CA. In vitro properties of orthodontic adhesives with fluoride or amorphous calcium phosphate. Int J Dent. 2011;2011:583521.

    Google Scholar 

  181. Hegde M, Moany A. Remineralization of enamel subsurface lesions with casein phosphopeptide–amorphous calcium phosphate: a quantitative energy dispersive X-ray analysis using scanning electron microscopy: an in vitro study. J Conserv Dent. 2012;15:61–7.

    Article  CAS  Google Scholar 

  182. Bar-Hillel R, Feuerstein O, Tickotsky N, Shapira J, Moskovitz M. Effects of amorphous calcium phosphate stabilized by casein phosphopeptides on enamel de- and remineralization in primary teeth: an in vitro study. J Dent Child (Chic). 2012;79:9–14.

    Google Scholar 

  183. Çehreli SB, Şar C, Polat-Özsoy O, Ünver B, Özsoy S. Effects of a fluoride-containing casein phosphopeptide–amorphous calcium phosphate complex on the shear bond strength of orthodontic brackets. Eur J Orthod. 2012;34:193–7.

    Article  Google Scholar 

  184. Baysal A, Uysal T. Do enamel microabrasion and casein phosphopeptide–amorphous calcium phosphate affect shear bond strength of orthodontic brackets bonded to a demineralized enamel surface? Angle Orthod. 2012;82:36–41.

    Article  Google Scholar 

  185. Prabhakar AR, Sharma D, Sugandhan S. Comparative evaluation of the remineralising effects and surface microhardness of glass ionomer cement containing grape seed extract and casein phosphopeptide–amorphous calcium phosphate: an in vitro study. Eur Arch Paediatr Dent. 2012;13:138–43.

    Article  CAS  Google Scholar 

  186. Weir MD, Chow LC, Xu HHK. Remineralization of demineralized enamel via calcium phosphate nanocomposite. J Dent Res. 2012;91:979–84.

    Article  CAS  Google Scholar 

  187. Cross KJ, Huq NL, Palamara JE, Perich JW, Reynolds EC. Physicochemical characterization of casein phosphopeptide–amorphous calcium phosphate nanocomplexes. J Biol Chem. 2005;280:15362–9.

    Article  CAS  Google Scholar 

  188. Schemehorn BR, Orban JC, Wood GD, Fischer GM, Winston AE. Remineralization by fluoride enhanced with calcium and phosphate ingredients. J Clin Dent. 1999;10:13–6.

    CAS  Google Scholar 

  189. Mayne RJ, Cochrane NJ, Cai F, Woods MG, Reynolds EC. In-vitro study of the effect of casein phosphopeptide amorphous calcium fluoride phosphate on iatrogenic damage to enamel during orthodontic adhesive removal. Am J Orthod Dentofacial Orthop. 2011;139:e543–51.

    Article  Google Scholar 

  190. Llena C, Forner L, Baca P. Anticariogenicity of casein phosphopeptide–amorphous calcium phosphate: a review of the literature. J Contemp Dent Pract. 2009;10:1–9.

    Google Scholar 

  191. Cai F, Shen P, Morgan MV, Reynolds EC. Remineralization of enamel subsurface lesions in situ by sugar-free lozenges containing casein phosphopeptide–amorphous calcium phosphate. Aust Dent J. 2003;48:240–3.

    Article  CAS  Google Scholar 

  192. Langhorst SE, O’Donnell JNR, Skrtic D. In vitro remineralization of enamel by polymeric amorphous calcium phosphate composite: quantitative microradiographic study. Dent Mater. 2009;25:884–91.

    Article  CAS  Google Scholar 

  193. Kumar VLN, Itthagarun A, King NM. The effect of casein phosphopeptide–amorphous calcium phosphate on remineralization of artificial caries-like lesions: an in vitro study. Aust Dent J. 2008;53:34–40.

    Article  CAS  Google Scholar 

  194. Ranjitkar S, Rodriguez JM, Kaidonis JA, Richards LC, Townsend GC, Bartlett DW. The effect of casein phosphopeptide–amorphous calcium phosphate on erosive enamel and dentine wear by toothbrush abrasion. J Dent. 2009;37:250–4.

    Article  CAS  Google Scholar 

  195. Ranjitkar S, Narayana T, Kaidonis JA, Hughes TE, Richards LC, Townsend GC. The effect of casein phosphopeptide–amorphous calcium phosphate on erosive dentine wear. Aust Dent J. 2009;54:101–7.

    Article  CAS  Google Scholar 

  196. Wegehaupt FJ, Attin T. The role of fluoride and casein phosphopeptide/amorphous calcium phosphate in the prevention of erosive/abrasive wear in an in vitro model using hydrochloric acid. Caries Res. 2010;44:358–63.

    Article  CAS  Google Scholar 

  197. Al-Mullahi AM, Toumba KJ. Effect of slow-release fluoride devices and casein phosphopeptide/amorphous calcium phosphate nanocomplexes on enamel remineralization in vitro. Caries Res. 2010;44:364–71.

    Article  Google Scholar 

  198. Giniger M, MacDonald J, Spaid M, Felix H. A 180-day clinical investigation of the tooth whitening efficacy of a bleaching gel with added amorphous calcium phosphate. J Clin Dent. 2005;16:11–6.

    Google Scholar 

  199. Giniger M, MacDonald J, Ziemba S, Felix H. The clinical performance of professionally dispensed bleaching gel with added amorphous calcium phosphate. J Am Dent Assoc. 2005;136:383–92.

    CAS  Google Scholar 

  200. Reynolds EC, Cai F, Cochrane NJ, Shen P, Walker GD, Morgan MV, Reynolds C. Fluoride and casein phosphopeptide–amorphous calcium phosphate. J Dent Res. 2008;87:344–8.

    Article  CAS  Google Scholar 

  201. Ramalingam L, Messer LB, Reynolds EC. Adding casein phosphopeptide–amorphous calcium phosphate to sports drinks to eliminate in vitro erosion. Pediatr Dent. 2005;27:61–7.

    CAS  Google Scholar 

  202. Panich M, Poolthong S. The effect of casein phosphopeptide–amorphous calcium phosphate and a cola soft drink on in vitro enamel hardness. J Am Dent Assoc. 2009;140:455–60.

    CAS  Google Scholar 

  203. Silva KG, Pedrini D, Delbem ACB, Ferreira L, Cannon M. In situ evaluation of the remineralizing capacity of pit and fissure sealants containing amorphous calcium phosphate and/or fluoride. Acta Odontol Scand. 2010;68:11–8.

    Article  CAS  Google Scholar 

  204. Bayrak S, Tunc ES, Sonmez IS, Egilmez T, Ozmen B. Effects of casein phosphopeptide–amorphous calcium phosphate (CPP–ACP) application on enamel microhardness after bleaching. Am J Dent. 2009;22:393–6.

    Google Scholar 

  205. Yengopal V, Mickenautsch S. Caries preventive effect of casein phosphopeptide–amorphous calcium phosphate (CPP–ACP): a meta-analysis. Acta Odontol Scand. 2009;67:321–32.

    Article  CAS  Google Scholar 

  206. Walker GD, Cai F, Shen P, Reynolds C, Ward B, Fone C, Honda S, Koganei M, Oda M, Reynolds EC. Increased remineralization of tooth enamel by milk containing added casein phosphopeptide–amorphous calcium phosphate. J Dairy Res. 2006;73:74–8.

    Article  CAS  Google Scholar 

  207. Walker GD, Cai F, Shen P, Bailey DL, Yuan Y, Cochrane NJ, Reynolds C, Reynolds EC. Consumption of milk with added casein phosphopeptide–amorphous calcium phosphate remineralizes enamel subsurface lesions in situ. Aust Dent J. 2009;54:245–9.

    Article  CAS  Google Scholar 

  208. Willershausen B, Schulz-Dobrick B, Gleissner C. In vitro evaluation of enamel remineralisation by a casein phosphopeptide–amorphous calcium phosphate paste. Oral Health Prev Dent. 2009;7:13–21.

    Google Scholar 

  209. Mei HL, Chen LY, Zhang D, Zhang PL, Liu B, Zhao W, Qi HY. Effects of casein phosphopeptide-stabilized amorphous calcium phosphate solution on enamel remineralization. J Clin Rehabil Tissue Eng Res. 2009;13:4825–8.

    CAS  Google Scholar 

  210. Pepelassi EM, Bissada NF, Greenwell H, Farah CF. Doxycycline-tricalcium phosphate composite graft facilitates osseous healing in advanced periodontal furcation defects. J Periodontol. 1991;62:106–15.

    Article  CAS  Google Scholar 

  211. Wiltfang J, Schlegel KA, Schultze-Mosgau S, Nkenke E, Zimmermann R, Kessler P. Sinus floor augmentation with β-tricalciumphosphate (β-TCP): does platelet-rich plasma promote its osseous integration and degradation? Clin Oral Implants Res. 2003;14:213–8.

    Article  Google Scholar 

  212. Zerbo IR, Zijderveld SA, de Boer A, Bronckers ALJJ, de Lange G, ten Bruggenkate CM, Burger EH. Histomorphometry of human sinus floor augmentation using a porous β-tricalcium phosphate: a prospective study. Clin Oral Implants Res. 2004;15:724–32.

    Article  Google Scholar 

  213. Zijderveld SA, Zerbo IR, van den Bergh JPA, Schulten EAJM, ten Bruggenkate CM. Maxillary sinus floor augmentation using a β-tricalcium phosphate (Cerasorb®) alone compared to autogenous bone grafts. Int J Oral Maxillofac Implants. 2005;20:432–40.

    Google Scholar 

  214. Shayesteh YS, Khojasteh A, Soleimani M, Alikhasi M, Khoshzaban A, Ahmadbeigi N. Sinus augmentation using human mesenchymal stem cells loaded into a β-tricalcium phosphate/hydroxyapatite scaffold. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106:203–9.

    Article  Google Scholar 

  215. Marukawa K, Ueki K, Okabe K, Nakagawa K, Yamamoto E. Use of self-setting α-tricalcium phosphate for maxillary sinus augmentation in rabbit. Clin Oral Implant Res. 2011;22:606–12.

    Article  Google Scholar 

  216. Klijn RJ, Hoekstra JWM, van den Beucken JJJP, Meijer GJ, Jansen JA. Maxillary sinus augmentation with microstructured tricalcium phosphate ceramic in sheep. Clin Oral Implant Res. 2012;23:274–80.

    Article  CAS  Google Scholar 

  217. Fischer-Brandies E, Dielert E. Clinical use of tricalciumphosphate and hydroxyapatite in maxillofacial surgery. J Oral Implant. 1985;12:40–4.

    CAS  Google Scholar 

  218. Ignatius AA, Ohnmacht M, Claes LE, Kreidler J, Palm F. A composite polymer/tricalcium phosphate membrane for guided bone regeneration in maxillofacial surgery. J Biomed Mater Res. 2001;58:564–9.

    Article  CAS  Google Scholar 

  219. Horch HH, Sader R, Pautke C, Neff A, Deppe H, Kolk A. Synthetic, pure-phase beta-tricalcium phosphate ceramic granules (Cerasorb®) for bone regeneration in the reconstructive surgery of the jaws. Int J Oral Maxillofac Surg. 2006;35:708–13.

    Article  Google Scholar 

  220. Saito E, Saito A, Kuboki Y, Kimura M, Honma Y, Takahashi T, Kawanami M. Periodontal repair following implantation of beta-tricalcium phosphate with different pore structures in class III furcation defects in dogs. Dent Mater J. 2012;31:681–8.

    Article  CAS  Google Scholar 

  221. Bilginer S, Esener T, Söylemezoglu F, Tiftik AM. The investigation of biocompatibility and apical microleakage of tricalcium phosphate based root canal sealers. J Endod. 1997;23:105–9.

    Article  CAS  Google Scholar 

  222. Niwa K, Ogawa K, Miyazawa K, Aoki T, Kawai T, Goto S. Application of α-tricalcium phosphate coatings on titanium subperiosteal orthodontic implants reduces the time for absolute anchorage: a study using rabbit femora. Dent Mater J. 2009;28:477–86.

    Article  CAS  Google Scholar 

  223. Hong YW, Kim JH, Lee BH, Lee YK, Choi BJ, Lee JH, Choi HJ. The effect of nano-sized β-tricalcium phosphate on remineralization in glass ionomer dental luting cement. Key Eng Mater. 2008;361–363:861–4.

    Article  Google Scholar 

  224. Shayegan A, Petein M, Abbeele AV. Beta-tricalcium phosphate, white mineral trioxide aggregate, white Portland cement, ferric sulfate, and formocresol used as pulpotomy agents in primary pig teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;105:536–42.

    Article  Google Scholar 

  225. Heller AI, Koenigs JF, Brilliant JD, Melfi RC, Driskell TD. Direct pulp capping of permanent teeth in primates using a resorbable form of tricalcium phosphate ceramic. J Endod. 1975;1:95–101.

    Article  CAS  Google Scholar 

  226. Koenigs JF, Heller AL, Brilliant JD, Melfi RC, Driskell TD. Induced apical closure of permanent teeth in adult primates using a resorbable form of tricalcium phosphate ceramic. J Endod. 1975;1:102–6.

    Article  CAS  Google Scholar 

  227. Boone ME, Kafrawy H. Pulp reaction to a tricalcium phosphate ceramic capping agent. Oral Surg Oral Med Oral Pathol. 1979;47:369–71.

    Article  Google Scholar 

  228. Himel V, Brady J, Weir J. Evaluation of repair of mechanicial perforations of the pulp chamber floor using biodegradable tricalcium phospahte or calcium hydroxide. J Endod. 1985;11:161–5.

    Article  CAS  Google Scholar 

  229. Yoshiba K, Yoshiba N, Iwaku M. Histological observations of hard tissue barrier formation in amputated dental pulp capped with alpha-tricalcium phosphate containing calcium hydroxide. Endod Dent Traumatol. 1994;10:113–20.

    Article  CAS  Google Scholar 

  230. Higashi T. Influence of particle size of calcium phosphate ceramics as a capping agent on the formation of a hard tissue barrier in amputated dental pulp. J Endod. 1996;22:281–3.

    Article  CAS  Google Scholar 

  231. Sinai IH, Romea DJ, Glassman G, Morse DR, Fantasia J, Furst ML. An evaluation of tricalcium phosphate as a treatment for endodontic perforations. J Endod. 1989;15:399–403.

    Article  CAS  Google Scholar 

  232. Balla R, LoMonaco CJ, Skribner J, Lin LM. Histological study of furcation perforations treated with tricalcium phosphate, hydroxylapatite, amalgam, and life. J Endod. 1991;17:234–8.

    Article  CAS  Google Scholar 

  233. Harbert H. Generic tricalcium phosphate plugs: an adjunct in endodontics. J Endod. 1991;17:131–4.

    Article  CAS  Google Scholar 

  234. Gaberthüel TW, Strub JR. Treatment of periodontal pockets with tricalcium phosphate in man. A preliminary report. SSO Schweiz Monatsschr Zahnheilkd. 1977;87:809–14.

    Google Scholar 

  235. Strub JR, Gaberthüel TW. Trikalziumphosphat und dessen biologisch abbaubare Keramik in der parodontalen Knochenchirurgie Eine Literaturubersicht. [Tricalcium phosphate and its biodegradable ceramics in periodontal bone surgery. A review of the literature]. SSO Schweiz Monatsschr Zahnheilkd. 1978;88:798–803.

    CAS  Google Scholar 

  236. Baldock WT, Hutchens LH Jr, McFall WT Jr, Simpson DM. An evaluation of tricalcium phosphate implants in human periodontal osseous defects of two patients. J Periodontol. 1985;56:1–7.

    Article  CAS  Google Scholar 

  237. Saffar JL, Colombier ML, Detienville R. Bone formation in tricalcium phosphate-filled periodontal intrabony lesions. Histological observations in humans. J Periodontol. 1990;61:209–16.

    Article  CAS  Google Scholar 

  238. Stavropoulos A, Windisch P, Szendröi-Kiss D, Peter R, Gera I, Sculean A. Clinical and histologic evaluation of granular beta-tricalcium phosphate for the treatment of human intrabony periodontal defects: a report on five cases. J Periodontol. 2010;81:325–34.

    Article  Google Scholar 

  239. Asvanund P, Chunhabundit P. Alveolar bone regeneration by implantation of nacre and β-tricalcium phosphate in guinea pig. Implant Dent. 2012;21:248–53.

    Article  Google Scholar 

  240. Maksimovskii IM, Zemskova MI. Primenenie kal’tsii-fosfatnoi keramiki pri lechenii glubokogo kariesa [The use of a calcium phosphate ceramic in treating deep caries.]. Stomatologiia. 1994;73:14–7.

    Google Scholar 

  241. Wang Y, Wang QS. Application of nano-hydroxyapatite and its composite biomaterials in stomatology. J Clin Rehabil Tissue Eng Res. 2010;14:1426–8.

    CAS  Google Scholar 

  242. Besinis A, van Noort R, Martin N. Infiltration of demineralized dentin with silica and hydroxyapatite nanoparticles. Dent Mater. 2012;28:1012–23.

    Article  CAS  Google Scholar 

  243. Chen H, Clarkson BH, Sun K, Mansfield JF. Self-assembly of synthetic hydroxyapatite nanorods into an enamel prism-like structure. J Colloid Interface Sci. 2005;288:97–103.

    Article  CAS  Google Scholar 

  244. Onuma K, Yamagishi K, Oyane A. Nucleation and growth of hydroxyapatite nanocrystals for nondestructive repair of early caries lesions. J Cryst Growth. 2005;282:199–207.

    Article  CAS  Google Scholar 

  245. Meng X, Lv K, Zhang J, Qu D. Caries inhibitory activity of the nano-HA in vitro. Key Eng Mater. 2007;330–332:251–4.

    Article  Google Scholar 

  246. Li BG, Wang JP, Zhao ZY, Sui YF, Zhang YX. Mineralizing of nano-hydroxyapatite powders on artificial caries. Rare Metal Mater Eng. 2007;36:128–30.

    CAS  Google Scholar 

  247. Li L, Pan HH, Tao JH, Xu XR, Mao CY, Gu XH, Tang RK. Repair of enamel by using hydroxyapatite nanoparticles as the building blocks. J Mater Chem. 2008;18:4079–84.

    Article  CAS  Google Scholar 

  248. Lim KT, Suh JD, Kim J, Choung PH, Chung JH. Calcium phosphate bioceramics fabricated from extracted human teeth for tooth tissue engineering. J Biomed Mater Res B (Appl Biomater). 2011;99B:399–411.

    Article  CAS  Google Scholar 

  249. Block MS, Kent JN, Kay JF. Evaluation of hydroxylapatite-coated titanium dental implants in dogs. J Oral Maxillofac Surg. 1987;45:601–7.

    Article  CAS  Google Scholar 

  250. Block MS, Kent JN, Beirne OR. Long-term follow-up on hydroxylapatite-coated cylindrical dental implants: a comparison between developmental and recent periods. J Oral Maxillofac Surg. 1994;52:937–44.

    Article  CAS  Google Scholar 

  251. Jones JD, Saigusa M, van Sickels JE, Tiner BD, Gardner WA. Clinical evaluation of hydroxyapatite-coated titanium plasma-sprayed and titanium plasma-sprayed cylinder dental implants. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1997;84:137–41.

    Article  CAS  Google Scholar 

  252. Gineste L, Gineste M, Ranz X, Ellefterion A, Guilhem A, Rouquet N, Frayssinet P. Degradation of hydroxylapatite, fluorapatite, and fluorhydroxyapatite coatings of dental implants in dogs. J Biomed Mater Res. 1999;48:224–34.

    Article  CAS  Google Scholar 

  253. Ong JL, Chan DCN. Hydroxyapatite and their use as coatings in dental implants: a review. Crit Rev Biomed Eng. 1999;28:667–707.

    Article  Google Scholar 

  254. Jones JD, Lupori J, van Sickels JE, Gardner W. A 5-year comparison of hydroxyapatite-coated titanium plasma-sprayed and titanium plasma-sprayed cylinder dental implants. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;87:649–52.

    Article  CAS  Google Scholar 

  255. Block MS, Gardiner D, Almerico B, Neal C. Loaded hydroxylapatite-coated implants and uncoated titanium-threaded implants in distracted dog alveolar ridges. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;89:676–85.

    Article  CAS  Google Scholar 

  256. Yoshinari M, Oda Y, Inoue T, Matsuzaka K, Shimono M. Bone response to calcium phosphate-coated and bisphosphonate-immobilized titanium implants. Biomaterials. 2002;23:2879–85.

    Article  CAS  Google Scholar 

  257. Schliephake H, Scharnweber D, Roesseler S, Dard M, Sewing A, Aref A. Biomimetic calcium phosphate composite coating of dental implants. Int J Oral Maxillofac Implants. 2006;21:738–46.

    Google Scholar 

  258. Kim SG, Hahn BD, Park DS, Lee YC, Choi EJ, Chae WS, Baek DH, Choi JY. Aerosol deposition of hydroxyapatite and 4-hexylresorcinol coatings on titanium alloys for dental implants. J Oral Maxillofac Surg. 2011;69:e354–63.

    Article  Google Scholar 

  259. Jung UW, Hwang JW, Choi DY, Hu KS, Kwon MK, Choi SH, Kim HJ. Surface characteristics of a novel hydroxyapatite-coated dental implant. J Periodontal Implant Sci. 2012;42:59–63.

    Article  CAS  Google Scholar 

  260. Kano T, Yamamoto R, Miyashita A, Komatsu K, Hayakawa T, Sato M, Oida S. Regeneration of periodontal ligament for apatite-coated tooth-shaped titanium implants with and without occlusion using rat molar model. J Hard Tissue Biol. 2012;21:189–202.

    Article  CAS  Google Scholar 

  261. Tinsley D, Watson CJ, Russell JL. A comparison of hydroxylapatite coated implant retained fixed and removable mandibular prostheses over 4 to 6 years. Clin Oral Implants Res. 2001;12:159–66.

    Article  CAS  Google Scholar 

  262. Binahmed A, Stoykewych A, Hussain A, Love B, Pruthi V. Long-term follow-up of hydroxyapatite-coated dental implants—a clinical trial. Int J Oral Maxillofac Implants. 2007;22:963–8.

    Google Scholar 

  263. Iezzi G, Scarano A, Petrone G, Piattelli A. Two human hydroxyapatite-coated dental implants retrieved after a 14-year loading period: a histologic and histomorphometric case report. J Periodontol. 2007;78:940–7.

    Article  Google Scholar 

  264. Owadally ID, Ford TRP. Effect of addition of hydroxyapatite on the physical properties of IRM. Int Endod J. 1994;27:227–32.

    Article  CAS  Google Scholar 

  265. Owadally ID, Chong BS, Ford TRP, Wilson RF. Biological properties of IRM with the addition of hydroxyapatite as a retrograde root filling material. Endod Dent Traumatol. 1994;10:228–32.

    Article  CAS  Google Scholar 

  266. Nicholson JW, Hawkins SJ, Smith JE. The incorporation of hydroxyapatite into glass-polyalkenoate (“glass-ionomer”) cements: a preliminary study. J Mater Sci Mater Med. 1993;4:418–21.

    Article  CAS  Google Scholar 

  267. Yap AU, Pek YS, Kumar RA, Cheang P, Khor KA. Experimental studies on a new bioactive material: HAIonomer cements. Biomaterials. 2002;23:955–62.

    Article  CAS  Google Scholar 

  268. Lucas ME, Arita K, Nishino M. Toughness, bonding and fluoride release properties of hydroxyapatite-added glass ionomer cement. Biomaterials. 2003;24:3787–94.

    Article  CAS  Google Scholar 

  269. Moshaverinia A, Ansari S, Moshaverinia M, Roohpour N, Darr JA, Rehman I. Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC). Acta Biomater. 2008;4:432–40.

    Article  CAS  Google Scholar 

  270. Moshaverinia A, Ansari S, Movasaghi Z, Billington RW, Darr JA, Rehman IU. Modification of conventional glass-ionomer cements with N-vinylpyrrolidone containing polyacids, nano-hydroxy and fluoroapatite to improve mechanical properties. Dent Mater. 2008;24:1381–90.

    Article  CAS  Google Scholar 

  271. Arita K, Yamamoto A, Shinonaga Y, Harada K, Abe Y, Nakagawa K, Sugiyama S. Hydroxyapatite particle characteristics influence the enhancement of the mechanical and chemical properties of conventional restorative glass ionomer cement. Dent Mater J. 2011;30:672–83.

    Article  CAS  Google Scholar 

  272. Lin J, Zhu J, Gu X, Wen W, Li Q, Fischer-Brandies H, Wang H, Mehl C. Effects of incorporation of nano-fluorapatite or nano-fluorohydroxyapatite on a resin-modified glass ionomer cement. Acta Biomater. 2011;7:1346–53.

    Article  CAS  Google Scholar 

  273. Goenka S, Balu R, Kumar TSS. Effects of nanocrystalline calcium deficient hydroxyapatite incorporation in glass ionomer cements. J Mech Behav Biomed Mater. 2012;7:69–76.

    Article  CAS  Google Scholar 

  274. Domingo C, Arcís RW, López-Macipe A, Osorio R, Rodríguez-Clemente R, Murtra J, Fanovich MA, Toledano M. Dental composites reinforced with hydroxyapatite: mechanical behavior and absorption/elution characteristics. J Biomed Mater Res. 2001;56:297–305.

    Article  CAS  Google Scholar 

  275. Brostow W, Estevez M, Lobland HEH, Hoang L, Rodriguez JR, Vargar S. Porous hydroxyapatite-based obturation materials for dentistry. J Mater Res. 2008;23:1587–96.

    Article  CAS  Google Scholar 

  276. Oduncu BS, Yucel S, Aydin I, Sener ID, Yamaner G. Polymerisation shrinkage of light-cured hydroxyapatite (HA)-reinforced dental composites. World Acad Sci Eng Technol. 2010;40:286–91.

    Google Scholar 

  277. Zhang Y, Wang Y. Hydroxyapatite effect on photopolymerization of self-etching adhesives with different aggressiveness. J Dent. 2012;40:564–70.

    Article  CAS  Google Scholar 

  278. Marković D, Petrović V, Krstić N, Lazarević-Macanović M, Nikolić Z. Radiological assesment of apex formation following use of hydroxyapatite. Acta Veter (Beograd). 2007;57:275–87.

    Article  Google Scholar 

  279. Krell KV, Wefel JS. A calcium phosphate cement root canal sealer—scanning electron microscopic analysis. J Endod. 1984;10:571–6.

    Article  CAS  Google Scholar 

  280. Krell KV, Madison S. Comparison of apical leakage in teeth obturated with a calcium phosphate cement or Grossman’s cement using lateral condensation. J Endod. 1985;11:336–9.

    Article  CAS  Google Scholar 

  281. Chohayeb AA, Chow LC, Tsaknis P. Evaluation of calcium phosphate as a root canal sealer–filler material. J Endod. 1987;13:384–7.

    Article  CAS  Google Scholar 

  282. Sugawara A, Chow LC, Takagi S, Chohayeb H. In vitro evaluation of the sealing ability of a calcium phosphate cement when used as a root canal sealer–filler. J Endod. 1990;16:162–5.

    Article  CAS  Google Scholar 

  283. Chaung HM, Hong CH, Chiang CP, Lin SK, Kuo YS, Lan WH, Hsieh CC. Comparison of calcium phosphate cement mixture and pure calcium hydroxide as direct pulp-capping agents. J Formos Med Assoc. 1996;95:545–50.

    CAS  Google Scholar 

  284. Dupoirieux L, Gard C. Hydroxyapatite cement for calvarial reconstruction. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;89:140–2.

    Article  CAS  Google Scholar 

  285. Cherng AM, Chow LC, Takagi S. In vitro evaluation of a calcium phosphate cement root canal filler/sealer. J Endod. 2001;27:613–5.

    Article  CAS  Google Scholar 

  286. Sugawara A, Fujikawa K, Kusama K, Nishiyama M, Murai S, Takagi S, Chow LC. Histopathologic reaction of calcium phosphate cement for alveolar ridge augmentation. J Biomed Mater Res. 2002;61:47–52.

    Article  CAS  Google Scholar 

  287. Fujikawa K, Sugawara A, Kusama K, Nishiyama M, Murai S, Takagi S, Chow LC. Fluorescent labeling analysis and electron probe microanalysis for alveolar ridge augmentation using calcium phosphate cement. Dent Mater J. 2002;21:296–305.

    Article  Google Scholar 

  288. Comuzzi L, Ooms E, Jansen JA. Injectable calcium phosphate cement as a filler for bone defects around oral implants, an experimental study in goats. Clin Oral Implants Res. 2002;13:304–11.

    Article  Google Scholar 

  289. Shirakata Y, Oda S, Kinoshita A, Kikuchi S, Tsuchioka H, Ishikawa I. Histocompatible healing of periodontal defects after application of injectable calcium phosphate bone cement. A preliminary study in dogs. J Periodontol. 2002;73:1043–53.

    Article  CAS  Google Scholar 

  290. Kim JS, Baek SH, Bae KS. In vitro study of the biocompatibility of newly developed calcium phosphate-based root canal sealers. J Endod. 2004;30:708–11.

    Article  Google Scholar 

  291. Noetzel J, Özer K, Reisshauer BH, Anil A, Rössler R, Neumann K, Kielbassa AM. Tissue responses to an experimental calcium phosphate cement and mineral trioxide aggregate as materials for furcation perforation repair, a histological study in dogs. Clin Oral Invest. 2006;10:77–83.

    Article  Google Scholar 

  292. Witjaksono W, Naing L, Mulyawati E, Samsudin AR, Oo MMT. Sealing ability of hydroxyapatite as a root canal sealer: in vitro study. Dent J. 2007;40:101–5.

    Google Scholar 

  293. Lee SK, Lee SK, Lee SI, Park JH, Jang JH, Kim HW, Kim EC. Effect of calcium phosphate cements on growth and odontoblastic differentiation in human dental pulp cells. J Endod. 2010;36:1537–42.

    Article  Google Scholar 

  294. Arisan V, Anil A, Wolke JG, Özer K. The effect of injectable calcium phosphate cement on bone anchorage of titanium implants: an experimental feasibility study in dogs. Int J Oral Maxillofac Surg. 2010;39:463–8.

    Article  CAS  Google Scholar 

  295. Jaber L, Mascrès C, Donohue WB. Reaction of the dental pulp to hydroxyapatite. Oral Surg Oral Med Oral Pathol. 1992;73:92–8.

    Article  CAS  Google Scholar 

  296. Hayashi Y, Imai M, Yanagiguchi K, Viloria IL, Ikeda T. Hydroxyapatite applied as direct pulp capping medicine substituted for osteodentin. J Endod. 1999;25:225–9.

    Article  CAS  Google Scholar 

  297. Zhang W, Walboomers XF, Jansen JA. The formation of tertiary dentin after pulp capping with a calcium phosphate cement, loaded with PLGA microparticles containing TGF-β1. J Biomed Mater Res A. 2008;85A:439–44.

    Article  CAS  Google Scholar 

  298. Nakagawa KI. Clinico-pathological studies of dental biomaterials in endodontic therapy, with special reference to the biocompatibility of the hydroxyapatite on exposed vital human pulp. Shikwa Gakuho. 1983;83:501–27.

    CAS  Google Scholar 

  299. Maeda Y, Okada M, Okuno Y, Soga K, Yamamoto H, Okazaki M. Clinical application of implant stabilizers: combined use of single-crystal sapphire endodontic implants with hydroxyapatite particles. J Osaka Univ Dent Sch. 1984;24:131–44.

    CAS  Google Scholar 

  300. Roane JB, Benenati FW. Successful management of a perforated mandibular molar using amalgam and hydroxyapatite. J Endod. 1987;13:400–4.

    Article  CAS  Google Scholar 

  301. Yamaguchi K. Biological evaluation of new hydroxyapatite endodontic cement in vivo. Histopathological and clinico-pathological observation. Dent Sci Rep. 1989;89:761–92.

    CAS  Google Scholar 

  302. Tomizuka K. Experimental study on apatite ceramics used as endodontic endosseous implant. Kokubyo Gakkai Zasshi. 1990;57:201–26.

    Article  CAS  Google Scholar 

  303. White JM, Goodis H. In vitro evaluation of an hydroxyapatite root canal system filling material. J Endod. 1991;17:561–6.

    Article  CAS  Google Scholar 

  304. MacDonald A, Moore BK, Newton CW, Brown CE Jr. Evaluation of an apatite cement as a root end filling material. J Endod. 1994;20:598–604.

    Article  CAS  Google Scholar 

  305. Gambarini G, Tagger M. Sealing ability of a new hydroxyapatite-containing endodontic sealer using lateral condensation and thermatic compaction of gutta-percha, in vitro. J Endod. 1996;22:165–7.

    Article  CAS  Google Scholar 

  306. Mangin C, Yesilsoy C, Nissan R, Stevens R. The comparative sealing ability of hydroxyapatite cement, mineral trioxide aggregate, and super ethoxybenzoic acid as root-end filling materials. J Endod. 2003;29:261–4.

    Article  CAS  Google Scholar 

  307. Yu L, Xu B, Wu B. Treatment of combined endodontic–periodontic lesions by intentional replantation and application of hydroxyapatites. Dent Traumatol. 2003;19:60–3.

    Article  Google Scholar 

  308. Marković D, Živojinović V, Koković V, Jokanović V. Hydroxyapatite as a root canal system filling material: cytotoxicity testing. Mater Sci Forum. 2004;453–454:555–60.

    Article  Google Scholar 

  309. Teodorović N, Martinović Ž. Significance of crown-down root canal preparation technique in endodontic therapy by using the hydroxylapatite sealer. Vojnosanit Pregl. 2005;62:447–52.

    Article  Google Scholar 

  310. Fathi MH, Salehi M, Mortazavi V, Mousavi SB, Parsapour A. Novel hydroxyapatite/niobium surface coating for endodontic dental implant. Surf Eng. 2006;22:353–8.

    Article  CAS  Google Scholar 

  311. Masudi SM, Luddin N, Mohamad D, Alkashakhshir JJ, Adnan R, Ramli RA. In vitro study on apical sealing ability of nano-hydroxyapatite-filled epoxy resin based endodontic sealer. AIP Conf Proc. 2010;1217:467–71.

    Article  CAS  Google Scholar 

  312. Vaishnavi C, Mohan B, Narayanan LL. Treatment of endodontically induced periapical lesions using hydroxyapatite, platelet-rich plasma, and a combination of both: an in vivo study. J Conserv Dent. 2011;14:140–6.

    Article  CAS  Google Scholar 

  313. Collares FM, Leitune VCB, Rostirolla FV, Trommer RM, Bergmann CP, Samuel SMW. Nanostructured hydroxyapatite as filler for methacrylate-based root canal sealers. Int Endod J. 2012;45:63–7.

    Article  CAS  Google Scholar 

  314. Hara Y, Murakami T, Kajiyama K, Maeda K, Akamine A, Nagamine N, Miyatake S, Abe T, Azemoto Y, Aono M. Application of calcium phosphate ceramics to periodontal therapy. 8. Effects of orthodontic force on repaired bone with hydroxyapatite. Nihon Shishubyo Gakkai Kaishi. 1989;31:224–34.

    Article  CAS  Google Scholar 

  315. Müller N. Alveolarfortsatzerhohung mit Hydroxylapatit. Klinische Erfahrungen aus prothetischer Sicht. [Augmentation of alveolar process with hydroxylapatite. Clinical orthodontic experience]. Dtsch Zahnarztl Z. 1989;44:596–9.

    Google Scholar 

  316. Schneider B, Diedrich P. Interaktion von kieferorthopadischer Zahnbewegung und Hydroxylapatit-Keramik. [Interaction between orthodontic tooth movement and hydroxyapatite ceramics]. Dtsch Zahnarztl Z. 1989;44:282–5.

    CAS  Google Scholar 

  317. Frame JW, Brady CL, Browne RM. Augmentation of the edentulous mandible using bone and hydroxyapatite: a comparative study in dogs. Int J Oral Surg. 1981;10:88–92.

    CAS  Google Scholar 

  318. Boyne P. Impact of durapatite as a bone grafting material in oral and maxillofacial surgery. Compend Contin Educ Dent. 1982;Suppl 2:S83-S86.

    Google Scholar 

  319. Mangano C, Venini E, Venini G. Il DAC blu come sostituto dell’osso in chirurgia orale. [Dense apatite ceramic (DAC) as a bone substitute in oral surgery.] Dent Cadmos. 1984;52:97, 100–101, 104–105.

  320. Cranin AN, Tobin GP, Glebman J. Applications of hydroxylapatite in oral and maxillofacial surgery. Part I: periodontal and endosteal-implant repairs. Compendium. 1987;8:254–256, 258, 261.

    Google Scholar 

  321. Cranin AN, Tobin GP, Gelbman J. Applications of hydroxylapatite in oral and maxillofacial surgery. Part II: ridge augmentation and repair of major oral defects. Compendium. 1987;8:334–335, 337.

    Google Scholar 

  322. Frame JW, Brady CL. The versatility of hydroxyapatite blocks in maxillofacial surgery. Br J Oral Maxillofac Surg. 1987;25:452–64.

    Article  CAS  Google Scholar 

  323. Frame JW. Hydroxyapatite as a biomaterial for alveolar ridge augmentation. Int J Oral Maxillofac Surg. 1987;16:642–55.

    Article  CAS  Google Scholar 

  324. Asanami S, Koike O, Chikata M, Shiba H, Ikeuchi S, Okada Y, Ohsaka F, Nomoto T. Studies of the clinical usefulness of porous hydroxylapatite in the field of dental and oral surgery. Keio J Med. 1988;37:265–81.

    Article  CAS  Google Scholar 

  325. Shirakawa M, Nomura T, Itoh T, Sakai N, Shizume M. Clinical application of hydroxyapatite ceramics APS-7 in the field of oral surgery. Shigaku Odontol J Nippon Dent Coll. 1988;76:782–815.

    CAS  Google Scholar 

  326. Salyer KE, Hall CD. Porous hydroxyapatite as an onlay bone-graft substitute for maxillofacial surgery. Plast Reconstr Surg. 1989;84:236–44.

    Article  CAS  Google Scholar 

  327. Hemmerle J, Leize M, Voegel JC. Long-term behaviour of a hydroxyapatite/collagen-glycosaminoglycan biomaterial used for oral surgery: a case report. J Mater Sci Mater Med. 1995;6:360–6.

    Article  CAS  Google Scholar 

  328. Kent JN, Quinn JH, Zide MF. Alveolar ridge augmentation using nonresorbable hydroxylapatite with or without autogenous cancellous bone. J Oral Maxillofac Surg. 1983;41:629–42.

    Article  CAS  Google Scholar 

  329. Holmes RE, Hagler HK. Porous hydroxylapatite as a bone graft substitute in mandibular contour augmentation: a histometric study. J Oral Maxillofac Surg. 1987;45:421–9.

    Article  CAS  Google Scholar 

  330. Wittkampf ARM. Augmentation of the maxillary alveolar ridge with hydroxylapatite and fibrin glue. J Oral Maxillofac Surg. 1988;46:1019–21.

    Article  CAS  Google Scholar 

  331. Friedman CD, Costantino PD, Takagi S, Chow LC. BoneSource™ hydroxyapatite cement, a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J Biomed Mater Res. 1998;43:428–32.

    Article  CAS  Google Scholar 

  332. Ylinen P, Suuronen R, Taurio R, Törmälä P, Rokkanen P. Use of hydroxylapatite/polymer-composite in facial bone augmentation. An experimental study. Int J Oral Maxillofac Surg. 2002;31:405–9.

    Article  CAS  Google Scholar 

  333. Hallman M, Hedin M, Sennerby L, Lundgren S. A prospective 1-year clinical and radiographic study of implants placed after maxillary sinus floor augmentation with bovine hydroxyapatite and autogenous bone. J Oral Maxillofac Surg. 2002;60:277–84.

    Article  Google Scholar 

  334. Wiltfang J, Kessler P, Buchfelder M, Merten HA, Neukam FW, Rupprecht S. Reconstruction of skull bone defects using the hydroxyapatite cement with calvarial split transplants. J Oral Maxillofac Surg. 2004;62:29–35.

    Article  Google Scholar 

  335. Zecha PJ, Schortinghuis J, van der Wal JE, Nagursky H, van den Broek KC, Sauerbier S, Vissink A, Raghoebar GM. Applicability of equine hydroxyapatite collagen (eHAC) bone blocks for lateral augmentation of the alveolar crest. A histological and histomorphometric analysis in rats. Int J Oral Maxillofac Surg. 2011;40:533–42.

    Article  CAS  Google Scholar 

  336. Scarano A, Degidi M, Perrotti V, Piattelli A, Iezzi G. Sinus augmentation with phycogene hydroxyapatite: histological and histomorphometrical results after 6 months in humans. A case series. Oral Maxillofac Surg. 2012;16:41–5.

    Article  Google Scholar 

  337. Mercier P. Failures in ridge reconstruction with hydroxyapatite. Analysis of cases and methods for surgical revision. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1995;80:389–93.

    Article  CAS  Google Scholar 

  338. Redondo LM, García Cantera JM, Hernández AV, Puerta CV. Effect of particulate porous hydroxyapatite on osteoinduction of demineralized bone autografts in experimental reconstruction of the rat mandible. Int J Oral Maxillofac Surg. 1995;24:445–8.

    Article  CAS  Google Scholar 

  339. Mercier P, Bellavance F, Cholewa J, Djokovic S. Long-term stability of atrophic ridges reconstructed with hydroxylapatite: a prospective study. J Oral Maxillofac Surg. 1996;54:960–9.

    Article  CAS  Google Scholar 

  340. Lew D, Farrell B, Bardach J, Keller J. Repair of craniofacial defects with hydroxyapatite cement. J Oral Maxillofac Surg. 1997;55:1441–1449; discussion 1449–1451.

    Google Scholar 

  341. Mishra S, Singh RK, Mohammad S, Pradhan R, Pal US. A comparative evaluation of decalcified freeze dried bone allograft, hydroxyapatite and their combination in osseous defects of the jaws. J Maxillofac Oral Surg. 2010;9:236–40.

    Article  Google Scholar 

  342. Zhang JC, Lu HY, Lv GY, Mo AC, Yan YG, Huang C. The repair of critical-size defects with porous hydroxyapatite/polyamide nanocomposite: an experimental study in rabbit mandibles. Int J Oral Maxillofac Surg. 2010;39:469–77.

    Article  CAS  Google Scholar 

  343. Wolford LM, Wardrop RW, Hartog JM. Coralline porous hydroxylapatite as a bone graft substitute in orthognathic surgery. J Oral Maxillofac Surg. 1987;45:1034–42.

    Article  CAS  Google Scholar 

  344. Moenning JE, Wolford LM. Coralline porous hydroxyapatite as a bone graft substitute in orthognathic surgery: 24-month follow-up results. Int J Adult Orthodon Orthognath Surg. 1989;4:105–17.

    CAS  Google Scholar 

  345. Rosen HM, Ackerman JL. Porous block hydroxyapatite in orthognathic surgery. Angle Orthod. 1991;61:185–191; discussion 192.

    Google Scholar 

  346. Cottrell DA, Wolford LM. Long-term evaluation of the use of coralline hydroxyapatite in orthognathic surgery. J Oral Maxillofac Surg. 1998;56:935–941; discussion 941–942.

    Google Scholar 

  347. Wolford LM, Freitas RZ. Porous block hydroxyapatite as a bone graft substitute in the correction of jaw and craniofacial deformities. BUMC Proc. 1999;12:243–6.

    Google Scholar 

  348. Giordano M, Macchi A, Ostinelli E, Tagliabue A. Effetto protettivo sullo smalto della idrossilapatite ultramicronizzata addizionata ad un cemento composito ortodontico. Studio in vivo. [Protective effect on enamel of ultra-micronized hydroxyapatite in combination with orthodontic composite cement. In vivo study]. Minerva Stomatol. 1996;45:29–35.

    CAS  Google Scholar 

  349. Liang X, Tang SQ, Lu D, Zhao ZH, Chao YL, Wang H. Study on hydroxyapatite-coated titanium implants used as orthodontic anchorage—an experimental investigation of implant stability and peri-implant neck tissue in dogs. Chin J Dent Res. 1998;1:57–61.

    CAS  Google Scholar 

  350. Larsen HD, Finger IM, Guerra LR, Kent JN. Prosthodontic management of the hydroxylapatite denture patient: a preliminary report. J Prosthet Dent. 1983;49:461–70.

    Article  CAS  Google Scholar 

  351. Larsen HD, Guerra LR, Finger IM. Hydroxylapatite: prosthodontic clinical considerations. Compend Contin Educ Dent. 1984;5:786–90.

    CAS  Google Scholar 

  352. Balshi TJ. Preventive durapatite ridge augmentation for esthetic fixed prosthodontics. J Prosthet Dent. 1987;58:266–70.

    Article  CAS  Google Scholar 

  353. Nelson DR, von Gonten AS. Prosthodontic management of the hydroxylapatite-augmented ridge. Gen Dent. 1988;36:315–9.

    CAS  Google Scholar 

  354. Tanaka O, Hirai T, Murase H. Prosthodontic analysis in mandibular ridge augmentation with hydroxyapatite particle. Part I. Evaluation of alveolar ridge form. Nippon Hotetsu Shika Gakkai Zasshi. 1988;32:1345–57.

    Article  CAS  Google Scholar 

  355. Zeltser C, Masella R, Cholewa J, Mercier P. Surgical and prosthodontic residual ridge reconstruction with hydroxyapatite. J Prosthet Dent. 1989;62:441–8.

    Article  CAS  Google Scholar 

  356. Tanaka O, Hirai T, Murase H. Prosthodontic analysis in mandibular ridge augmentation with hydroxyapatite particle. 2. Evaluation of masticatory function and overall assessment. Nippon Hotetsu Shika Gakkai Zasshi. 1989;33:1466–76.

    Article  CAS  Google Scholar 

  357. Denissen HW, Kalk W, Veldhuis AAH, van den Hooff A. Eleven-year study of hydroxyapatite implants. J Prosthet Dent. 1989;61:706–12.

    Article  CAS  Google Scholar 

  358. Ogiso M, Tabata T, Kuo PT, Borgese D. A histologic comparison of the functional loading capacity of an occluded dense apatite implant and the natural dentition. J Prosthet Dent. 1994;71:581–8.

    Article  CAS  Google Scholar 

  359. Ngoc NTB, Mukohyama H, Hlaing S, Kondo H, Inoue T, Taniguchi H, Ohyama T. Prosthodontic treatment for patients with large mandibular defects; porous hydroxyapatite grafts. J Med Dent Sci. 1997;44:93–8.

    CAS  Google Scholar 

  360. Sung YM, Shin YK, Ryu JJ. Preparation of hydroxyapatite/zirconia bioceramic nanocomposites for orthopaedic and dental prosthesis applications. Nanotechnology. 2007;18:065602.

    Article  CAS  Google Scholar 

  361. Meffert RM, Thomas JR, Hamilton KM, Brownstein CN. Hydroxylapatite as an alloplastic graft in the treatment of human periodontal osseous defects. J Periodontol. 1985;56:63–73.

    Article  CAS  Google Scholar 

  362. Stahl SS, Froum SJ. Histologic and clinical responses to porous hydroxylapatite implants in human periodontal defects. Three to twelve months postimplantation. J Periodontol. 1987;58:689–95.

    Article  CAS  Google Scholar 

  363. Bowen JA, Mellonig JT, Gray JL, Towle HT. Comparison of decalcified freeze-dried bone allograft and porous particulate hydroxyapatite in human periodontal osseous defects. J Periodontol. 1989;60:647–54.

    Article  CAS  Google Scholar 

  364. Mora F, Ouhayoun JP. Clinical evaluation of natural coral and porous hydroxyapatite implants in periodontal bone lesions: results of a 1-year follow-up. J Clin Periodontol. 1995;22:877–84.

    Article  CAS  Google Scholar 

  365. Brown GD, Mealey BL, Nummikoski PV, Bifano SL, Waldrop TC. Hydroxyapatite cement implant for regeneration of periodontal osseous defects in humans. J Periodontol. 1998;69:146–57.

    Article  CAS  Google Scholar 

  366. Yukna RA, Callan DP, Krauser JT, Evans GH, Aichelmann-Reidy ME, Moore K, Cruz R, Scott JB. Multi-center clinical evaluation of combination anorganic bovine-derived hydroxyapatite matrix (ABM)/cell binding peptide (P-15) as a bone replacement graft material in human periodontal osseous defects. 6-Month results. J Periodontol. 1998;69:655–63.

    Article  CAS  Google Scholar 

  367. Morris HF, Ochi S, Spray JR, Olson JW. Periodontal-type measurements associated with hydroxyapatite-coated and non-HA-coated implants: uncovering to 36 months. Ann Periodontol. 2000;5:56–67.

    Article  CAS  Google Scholar 

  368. Okuda K, Tai H, Tanabe K, Suzuki H, Sato T, Kawase T, Saito Y, Wolff LF, Yoshie H. Platelet-rich plasma combined with a porous hydroxyapatite graft for the treatment of intrabony periodontal defects in humans: a comparative controlled clinical study. J Periodontol. 2005;76:890–8.

    Article  CAS  Google Scholar 

  369. Okuda K, Yamamiya K, Kawase T, Mizuno H, Ueda M, Yoshie H. Treatment of human infrabony periodontal defects by grafting human cultured periosteum sheets combined with platelet-rich plasma and porous hydroxyapatite granules: case series. J Int Acad Periodontol. 2009;11:206–13.

    Google Scholar 

  370. Kawase T, Okuda K, Kogami H, Nakayama H, Nagata M, Sato T, Wolff LF, Yoshie H. Human periosteum-derived cells combined with superporous hydroxyapatite blocks used as an osteogenic bone substitute for periodontal regenerative therapy: an animal implantation study using nude mice. J Periodontol. 2010;81:420–7.

    Article  CAS  Google Scholar 

  371. Trombelli L, Simonelli A, Pramstraller M, Wikesjö UME, Farina R. Single flap approach with and without guided tissue regeneration and a hydroxyapatite biomaterial in the management of intraosseous periodontal defects. J Periodontol. 2010;81:1256–63.

    Article  CAS  Google Scholar 

  372. Heinz B, Kasaj A, Teich M, Jepsen S. Clinical effects of nanocrystalline hydroxyapatite paste in the treatment of intrabony periodontal defects: a randomized controlled clinical study. Clin Oral Invest. 2010;14:525–31.

    Article  Google Scholar 

  373. Jung UW, Lee JS, Park WY, Cha JK, Hwang JW, Park JC, Kim CS, Cho KS, Chai JK, Choi SH. Periodontal regenerative effect of a bovine hydroxyapatite/collagen block in one-wall intrabony defects in dogs: a histometric analysis. J Periodontal Implant Sci. 2011;41:285–92.

    Article  CAS  Google Scholar 

  374. Horváth A, Stavropoulos A, Windisch P, Lukács L, Gera I, Sculean A. Histological evaluation of human intrabony periodontal defects treated with an unsintered nanocrystalline hydroxyapatite paste. Clin Oral Invest. 2013;17:423–30.

    Article  Google Scholar 

  375. Yoshinuma N, Sato S, Fukuyama T, Murai M, Ito K. Ankylosis of nonresorbable hydroxyapatite graft material as a contributing factor in recurrent periodontitis. Int J Periodontics Restorative Dent. 2012;32:331–6.

    Google Scholar 

  376. Shirai Y, Okuda K, Kubota T, Wolff LF, Yoshie H. The comparative effectiveness of granules or blocks of superporous hydroxyapatite for the treatment of intrabony periodontal defects. Open J Stomatol. 2012;2:81–7.

    Article  CAS  Google Scholar 

  377. Dorozhkin SV. Dissolution mechanism of calcium apatites in acids: a review of literature. World J Methodol. 2012;2:1–17.

    Article  Google Scholar 

  378. Xu HHK, Moreau JL. Dental glass-reinforced composite for caries inhibition: calcium phosphate ion release and mechanical properties. J Biomed Mater Res B (Appl Biomater). 2010;92B:332–40.

    CAS  Google Scholar 

  379. Shen Q, Sun J, Wu J, Liu C, Chen F. An in vitro investigation of the mechanical–chemical and biological properties of calcium phosphate/calcium silicate/bismutite cement for dental pulp capping. J Biomed Mater Res B (Appl Biomater). 2010;94B:141–8.

    CAS  Google Scholar 

  380. Xu HHK, Weir MD, Sun L. Calcium and phosphate ion releasing composite: effect of pH on release and mechanical properties. Dent Mater. 2009;25:535–42.

    Article  CAS  Google Scholar 

  381. Daculsi G, Weiss P, Bouler JM, Gauthier O, Millot F, Aguado E. Biphasic calcium phosphate/hydrosoluble polymer composites: a new concept for bone and dental substitution biomaterials. Bone. 1999;25(Suppl. 1):59S–61S.

    Article  CAS  Google Scholar 

  382. Weiss P, Layrolle P, Clergeau LP, Enckel B, Pilet P, Amouriq Y, Daculsi G, Giumelli B. The safety and efficacy of an injectable bone substitute in dental sockets demonstrated in a human clinical trial. Biomaterials. 2007;28:3295–305.

    Article  CAS  Google Scholar 

  383. Struillou X, Boutigny H, Badran Z, Fellah BH, Gauthier O, Sourice S, Pilet P, Rouillon T, Layrolle P, Weiss P, Soueidan A. Treatment of periodontal defects in dogs using an injectable composite hydrogel/biphasic calcium phosphate. J Mater Sci Mater Med. 2011;22:1707–17.

    Article  CAS  Google Scholar 

  384. Ellinger RF, Nery EB, Lynch KL. Histological assessment of periodontal osseous defects following implantation of hydroxyapatite and biphasic calcium phosphate ceramics: a case report. Int J Periodontics Restorative Dent. 1986;6:22–33.

    CAS  Google Scholar 

  385. Nery EB, Eslami A, van Swol RL. Biphasic calcium phosphate ceramic combined with fibrillar collagen with and without citric acid conditioning in the treatment of periodontal osseous defects. J Periodontol. 1990;61:166–72.

    Article  CAS  Google Scholar 

  386. Nery EB, Lee KK, Czajkowski S, Dooner JJ, Duggan M, Ellinger RF, Henkin JM, Hines R, Miller M, Olson JW. A Veterans Administration Cooperative Study of biphasic calcium phosphate ceramic in periodontal osseous defects. J Periodontol. 1990;61:737–44.

    Article  CAS  Google Scholar 

  387. Nery EB, LeGeros RZ, Lynch KL, Lee K. Tissue response to biphasic calcium phosphate ceramic with different ratios of HA/βTCP in periodontal osseous defects. J Periodontol. 1992;63:729–35.

    Article  CAS  Google Scholar 

  388. Sculean A, Windisch P, Szendröi-Kiss D, Horváth A, Rosta P, Becker J, Gera I, Schwarz F. Clinical and histologic evaluation of an enamel matrix derivative combined with a biphasic calcium phosphate for the treatment of human intrabony periodontal defects. J Periodontol. 2008;79:1991–9.

    Article  Google Scholar 

  389. Shi H, Ma J, Zhao N, Chen Y, Liao Y. Periodontal regeneration in experimentally-induced alveolar bone dehiscence by an improved porous biphasic calcium phosphate ceramic in beagle dogs. J Mater Sci Mater Med. 2008;19:3515–24.

    Article  CAS  Google Scholar 

  390. Su B, Su J, Ran J, Su B. Biological performance of dental biphasic calcium phosphate ceramics modified by cold plasma. Key Eng Mater. 2008;368–372:1264–7.

    Article  Google Scholar 

  391. Pandit N, Gupta R, Gupta S. A comparative evaluation of biphasic calcium phosphate material and bioglass in the treatment of periodontal osseous defects: a clinical and radiological study. J Contemp Dent Pract. 2010;11:25–32.

    Google Scholar 

  392. Kaushick BT, Jayakumar ND, Padmalatha O, Varghese S. Treatment of human periodontal infrabony defects with hydroxyapatite + β tricalcium phosphate bone graft alone and in combination with platelet rich plasma: a randomized clinical trial. Indian J Dent Res. 2011;22:505–10.

    Article  Google Scholar 

  393. Kim S, Jung UW, Lee YK, Choi SH. Effects of biphasic calcium phosphate bone substitute on circumferential bone defects around dental implants in dogs. Int J Oral Maxillofac Implants. 2011;26:265–73.

    Google Scholar 

  394. Wagner W, Wiltfang J, Pistner H, Yildirim M, Ploder B, Chapman M, Schiestl N, Hantak E. Bone formation with a biphasic calcium phosphate combined with fibrin sealant in maxillary sinus floor elevation for delayed dental implant. Clin Oral Implants Res. 2012;23:1112–7.

    Article  Google Scholar 

  395. Pietruska M, Pietruski J, Nagy K, Brecx M, Arweiler NB, Sculean A. Four-year results following treatment of intrabony periodontal defects with an enamel matrix derivative alone or combined with a biphasic calcium phosphate. Clin Oral Invest. 2012;16:1191–7.

    Article  Google Scholar 

  396. Wang L, Li J, Xie Y, Yang P, Liao Y, Guo G. Effect of nano biphasic calcium phosphate bioceramics on periodontal regeneration in the treatment of alveolar defects. Adv Mater Res. 2012;486:422–5.

    Article  CAS  Google Scholar 

  397. Bosco J, Enkel B, Armengol V, Daculsi G, Jean A, Weiss P. Bioactive calcium phosphate material for dental endodontic treatment. Root apical deposition. Key Eng Mater. 2006;309–311:1157–60.

    Article  Google Scholar 

  398. Kiba W, Imazato S, Takahashi Y, Yoshioka S, Ebisu S, Nakano T. Efficacy of polyphasic calcium phosphates as a direct pulp capping material. J Dent. 2010;38:828–37.

    Article  CAS  Google Scholar 

  399. Nevins AJ, LaPorta RF, Borden BG, Spangberg LS. Pulpotomy and partial pulpectomy procedures in monkey teeth using cross-linked collagen–calcium phosphate gel. Oral Surg Oral Med Oral Pathol. 1980;49:360–5.

    Article  CAS  Google Scholar 

  400. Shayegan A, Atash R, Petein M, Abbeele AV. Nanohydroxyapatite used as a pulpotomy and direct pulp capping agent in primary pig teeth. J Dent Child (Chic). 2010;77:77–83.

    Google Scholar 

  401. Chau JYM, Hutter JW, Mork TO, Nicoll BK. An in vitro study of furcation perforation repair using calcium phosphate cement. J Endod. 1997;23:588–92.

    Article  CAS  Google Scholar 

  402. Yang SE, Baek SH, Lee W, Kum KY, Bae KS. In vitro evaluation of the sealing ability of newly developed calcium phosphate-based root canal sealer. J Endod. 2007;33:978–81.

    Article  Google Scholar 

  403. Khashaba RM, Chutkan NB, Borke JL. Comparative study of biocompatibility of newly developed calcium phosphate-based root canal sealers on fibroblasts derived from primary human gingiva and a mouse L929 cell line. Int Endod J. 2009;42:711–8.

    Article  CAS  Google Scholar 

  404. Bae WJ, Chang SW, Lee SI, Kum KY, Bae KS, Kim EC. Human periodontal ligament cell response to a newly developed calcium phosphate-based root canal sealer. J Endod. 2010;36:1658–63.

    Article  Google Scholar 

  405. Khashaba RM, Moussa MM, Chutkan NB, Borke JL. The response of subcutaneous connective tissue to newly developed calcium phosphate-based root canal sealers. Int Endod J. 2011;44:342–52.

    Article  CAS  Google Scholar 

  406. Tiwari S, Nandlal B. Role of synthetic hydroxyapatite in dentistry. Saarbrucken: Lap Lambert Academic Publishing; 2012. p. 90.

    Google Scholar 

  407. Cherng AM, Takagi S, Chow LC. Acid neutralization capacity of a tricalcium silicate-containing calcium phosphate cement as an endodontic material. J Res Natl Inst Stand Technol. 2010;115:471–6.

    Article  CAS  Google Scholar 

  408. Ishida H, Nahara Y, Hamada T. Dimensional accuracy of castable apatite ceramic crowns: the influence of heat treatment on dimensional changes and distortion of crowns. J Prosthet Dent. 1992;68:279–83.

    Article  CAS  Google Scholar 

  409. Hulshoff JEG, Jansen JA. Initial interfacial healing events around calcium phosphate (Ca–P) coated oral implants. Clin Oral Implants Res. 1997;8:393–400.

    Article  CAS  Google Scholar 

  410. Alexander F, Christian U, Stefan T, Christoph V, Reinhard G, Georg W. Long-term effects of magnetron-sputtered calcium phosphate coating on osseointegration of dental implants in non-human primates. Clin Oral Implants Res. 2009;20:183–8.

    Article  Google Scholar 

  411. Junker R, Manders PJD, Wolke J, Borisov Y, Braceras I, Jansen JA. Bone reaction adjacent to microplasma-sprayed calcium phosphate-coated oral implants subjected to an occlusal load, an experimental study in the dog. Clin Oral Implants Res. 2011;22:135–42.

    Article  CAS  Google Scholar 

  412. Palarie V, Bicer C, Lehmann KM, Zahalka M, Draenert FG, Kämmerer PW. Early outcome of an implant system with a resorbable adhesive calcium–phosphate coating—a prospective clinical study in partially dentate patients. Clin Oral Invest. 2012;16:1039–48.

    Article  Google Scholar 

  413. Alghamdi HS, van Oirschot BAJA, Bosco R, van den Beucken JJ, Aldosari AAF, Anil S, Jansen JA. Biological response to titanium implants coated with nanocrystals calcium phosphate or type 1 collagen in a dog model. Clin Oral Implant Res. 2012;. doi:10.1111/j.1600-0501.2011.02409.x.

    Google Scholar 

  414. Sato I, Akizuki T, Oda S, Tsuchioka H, Hayashi C, Takasaki AA, Mizutani K, Kawakatsu N, Kinoshita A, Ishikawa I, Izumi Y. Histological evaluation of alveolar ridge augmentation using injectable calcium phosphate bone cement in dogs. J Oral Rehabil. 2009;36:762–9.

    Article  CAS  Google Scholar 

  415. Meguro D, Hayakawa T, Kawasaki M, Kasai K. Shear bond strength of calcium phosphate ceramic brackets to human enamel. Angle Orthod. 2006;76:301–5.

    Google Scholar 

  416. Meguro D, Hayakawa T, Kasai K. Efficacy of using orthodontic adhesive resin in bonding and debonding characteristics of a calcium phosphate ceramic bracket. Orthod Waves. 2006;65:148–54.

    Article  Google Scholar 

  417. Joo HJ, Park YG. Friction of calcium phosphate brackets to stainless steel wire. Korean J Orthod. 2007;37:376–85.

    Google Scholar 

  418. Crubezy E, Murail P, Girard L, Bernadou JP. False teeth of the Roman world. Nature. 1998;391:29.

    Article  CAS  Google Scholar 

  419. Bobbio A. The first endosseous alloplastic implant in the history of man. Bull Hist Dent. 1972;20:1–6.

    CAS  Google Scholar 

  420. Lavenus S, Louarn G, Layrolle P. Nanotechnology and dental implants. Int J Biomater. 2010;2010:915327.

    Google Scholar 

  421. Khoury F, Antoun H, Missika P. Bone augmentation in oral implantology. Hanover Park: Quintessence Publishing; 2007. p. 435.

    Google Scholar 

  422. Chiapasco M, Casentini P, Zaniboni M. Bone augmentation procedures in implant dentistry. Int J Oral Maxillofac Implants. 2009;24(Suppl. 2):37–59.

    Google Scholar 

  423. Gaetti-Jardim EC, Santiago-Junior JF, Goiato MC, Pellizer EP, Magro-Filho O, Jardim EG Jr. Dental implants in patients with osteoporosis: a clinical reality? J Craniofac Surg. 2011;22:1111–3.

    Article  Google Scholar 

  424. Reis ECC, Borges APB, Araújo MVF, Mendes VC, Guan L, Davies JE. Periodontal regeneration using a bilayered PLGA/calcium phosphate construct. Biomaterials. 2011;32:9244–53.

    Article  CAS  Google Scholar 

  425. Chen FM, Zhang J, Zhang M, An Y, Chen F, Wu ZF. A review on endogenous regenerative technology in periodontal regenerative medicine. Biomaterials. 2010;31:7892–927.

    Article  CAS  Google Scholar 

  426. Hayashi C, Kinoshita A, Oda S, Mizutani K, Shirakata Y, Ishikawa I. Injectable calcium phosphate bone cement provides favorable space and a scaffold for periodontal regeneration in dogs. J Periodontol. 2006;77:940–6.

    Article  CAS  Google Scholar 

  427. Shirakata Y, Setoguchi T, Machigashira M, Matsuyama T, Furuichi Y, Hasegawa K, Yoshimoto T, Izumi Y. Comparison of injectable calcium phosphate bone cement grafting and open flap debridement in periodontal intrabony defects: a randomized clinical trial. J Periodontol. 2008;79:25–32.

    Article  CAS  Google Scholar 

  428. Chitsazi MT, Shirmohammadi A, Faramarzie M, Pourabbas R, Rostamzadeh AN. A clinical comparison of nano-crystalline hydroxyapatite (Ostim) and autogenous bone graft in the treatment of periodontal intrabony defects. Med Oral Patol Oral Cir Bucal. 2011;16:448–53.

    Article  Google Scholar 

  429. Shirakata Y, Taniyama K, Yoshimoto T, Takeuchi N, Noguchi K. Effect of bone swaging with calcium phosphate bone cement on periodontal regeneration in dogs. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;114:35–42.

    Article  Google Scholar 

  430. García D, García L, Pérez MP, Suarez M, Delgado JA, García R, Rodríguez Y, Fernández I, Márquez D. Filling of post-extraction dental socket with hydroxyapatite granules APAFILL-G™. Key Eng Mater. 2001;192–195:925–8.

    Article  Google Scholar 

  431. Lee JS, Wikesjö UME, Jung UW, Choi SH, Pippig S, Siedler M, Kim CK. Periodontal wound healing/regeneration following implantation of recombinant human growth/differentiation factor-5 in a β-tricalcium phosphate carrier into one-wall intrabony defects in dogs. J Clin Periodontol. 2010;37:382–9.

    Article  CAS  Google Scholar 

  432. Emerton KB, Drapeau SJ, Prasad H, Rohrer M, Roffe P, Hopper K, Schoolfield J, Jones A, Cochran DL. Regeneration of periodontal tissues in non-human primates with rhGDF-5 and beta-tricalcium phosphate. J Dent Res. 2011;90:1416–21.

    Article  CAS  Google Scholar 

  433. Ridgway HK, Mellonig JT, Cochran DL. Human histologic and clinical evaluation of recombinant human platelet-derived growth factor and beta-tricalcium phosphate for the treatment of periodontal intraosseous defects. Int J Periodontics Restorative Dent. 2008;28:171–9.

    Google Scholar 

  434. Jayakumar A, Rajababu P, Rohini S, Butchibabu K, Naveen A, Reddy PK, Vidyasagar S, Satyanarayana D, Kumar SP. Multi-centre, randomized clinical trial on the efficacy and safety of recombinant human platelet-derived growth factor with β-tricalcium phosphate in human intra-osseous periodontal defects. J Clin Periodontol. 2011;38:163–72.

    Article  Google Scholar 

  435. Sorensen RG, Wikesjö UME, Kinoshita A, Wozney JM. Periodontal repair in dogs: evaluation of a bioresorbable calcium phosphate cement (Ceredex™) as a carrier for rhBMP-2. J Clin Periodontol. 2004;31:796–804.

    Article  CAS  Google Scholar 

  436. Pietruska M, Skurska A, Pietruski J, Dolińska E, Arweiler N, Milewski R, Duraj E, Sculean A. Clinical and radiographic evaluation of intrabony periodontal defect treatment by open flap debridement alone or in combination with nanocrystalline hydroxyapatite bone substitute. Ann Anat. 2012;194:533–7.

    Article  CAS  Google Scholar 

  437. Papas A. Calcium phosphate mouth rinse for preventing oral mucositis. Commun Oncol. 2008;5:171–2.

    Article  Google Scholar 

  438. Waśko-Grabowska A, Rzepecki P, Oborska S, Barzał J, Gawroński K, Młot B, Szczylik C. Efficiency of supersaturated calcium phosphate mouth rinse treatment in patients receiving high-dose melphalan or BEAM prior to autologous blood stem cell transplantation: a single-center experience. Transplant Proc. 2011;43:3111–3.

    Article  CAS  Google Scholar 

  439. Markiewicz M, Dzierzak-Mietla M, Frankiewicz A, Zielinska P, Koclega A, Kruszelnicka M, Kyrcz-Krzemien S. Treating oral mucositis with a supersaturated calcium phosphate rinse: comparison with control in patients undergoing allogeneic hematopoietic stem cell transplantation. Support Care Cancer. 2012;20:2223–9.

    Article  Google Scholar 

  440. Nyman S, Lindhe J, Karring T, Rylander H. New attachment following surgical treatment of human periodontal disease. J Clin Periodontol. 1982;9:290–6.

    Article  CAS  Google Scholar 

  441. Chai Y, Slavkin HC. Prospects for tooth regeneration in the 21st century: a perspective. Microsc Res Tech. 2003;60:469–79.

    Article  Google Scholar 

  442. Hu B, Nadiri A, Kuchler-Bopp S, Perrin-Schmitt F, Peters H, Lesot H. Tissue engineering of tooth crown, root, and periodontium. Tissue Eng. 2006;12:2069–75.

    Article  CAS  Google Scholar 

  443. Duailibi SE, Duailibi MT, Zhang W, Asrican R, Vacanti JP, Yelick PC. Bioengineered dental tissues grown in the rat jaw. J Dent Res. 2008;87:745–50.

    Article  CAS  Google Scholar 

  444. Ikeda E, Morita R, Nakao K, Ishida K, Nakamura T, Takano-Yamamoto T, Ogawa M, Mizuno M, Kasugai S, Tsuji T. Fully functional bioengineered tooth replacement as an organ replacement therapy. Proc Natl Acad Sci USA. 2009;106:13475–80.

    Article  CAS  Google Scholar 

  445. Horst OV, Chavez MG, Jheon AH, Desai T, Klein OD. Stem cell and biomaterials research in dental tissue engineering and regeneration. Dent Clin North Am. 2012;56:495–520.

    Article  Google Scholar 

  446. Yelick PC, Vacanti JP. Bioengineered teeth from tooth bud cells. Dent Clin North Am. 2006;50:191–203.

    Article  Google Scholar 

  447. Nakao K, Morita R, Saji Y, Ishida K, Tomita Y, Ogawa M, Saitoh M, Tomooka Y, Tsuji T. The development of a bioengineered organ germ method. Nat Methods. 2007;4:227–30.

    Article  CAS  Google Scholar 

  448. Yu JH, Wang YJ, Deng ZH, Tang L, Li YF, Shi JN, Jin Y. Odontogenic capability: bone marrow stromal stem cells versus dental pulp stem cells. Biol Cell. 2007;99:465–674.

    Article  CAS  Google Scholar 

  449. An S, Ling J, Gao Y, Xiao Y. Effects of varied ionic calcium and phosphate on the proliferation, osteogenic differentiation and mineralization of human periodontal ligament cells in vitro. J Periodontol Res. 2012;47:374–82.

    Article  CAS  Google Scholar 

  450. Kitamura C, Nishihara T, Terashita M, Tabata Y, Washio A. Local regeneration of dentin-pulp complex using controlled release of FGF-2 and naturally derived sponge-like scaffolds. Int J Dent. 2012;2012:190561.

    Google Scholar 

  451. Zuolin J, Hong Q, Jiali T. Dental follicle cells combined with beta-tricalcium phosphate ceramic: a novel available therapeutic strategy to restore periodontal defects. Med Hypotheses. 2010;75:669–70.

    Article  CAS  Google Scholar 

  452. Zheng L, Yang F, Shen H, Hu X, Mochizuki C, Sato M, Wang S, Zhang Y. The effect of composition of calcium phosphate composite scaffolds on the formation of tooth tissue from human dental pulp stem cells. Biomaterials. 2011;32:7053–9.

    Article  CAS  Google Scholar 

  453. Liao F, Chen Y, Li Z, Wang Y, Shi B, Gong Z, Cheng X. A novel bioactive three-dimensional β-tricalcium phosphate/chitosan scaffold for periodontal tissue engineering. J Mater Sci Mater Med. 2010;21:489–96.

    Article  CAS  Google Scholar 

  454. Markopoulou CE, Dereka XE, Vavouraki HN, Pepelassi EE, Mamalis AA, Karoussis IK, Vrotsos IA. Effect of rhTGF-β1 combined with bone grafts on human periodontal cell differentiation. Growth Factors. 2011;29:14–20.

    Article  CAS  Google Scholar 

  455. Liu HC, E LL, Wang DS, Su F, Wu X, Shi ZP, Lv Y, Wang JZ. Reconstruction of alveolar bone defects using bone morphogenetic protein 2 mediated rabbit dental pulp stem cells seeded on nano-hydroxyapatite/collagen/poly(l-lactide). Tissue Eng A. 2011;17:2417–33.

    Article  CAS  Google Scholar 

  456. Ohara T, Itaya T, Usami K, Ando Y, Sakurai H, Honda MJ, Ueda M, Kagami H. Evaluation of scaffold materials for tooth tissue engineering. J Biomed Mater Res A. 2010;94A:800–5.

    CAS  Google Scholar 

  457. Tonomura A, Mizuno D, Hisada A, Kuno N, Ando Y, Sumita Y, Honda MJ, Satomura K, Sakurai H, Ueda M, Kagami H. Differential effect of scaffold shape on dentin regeneration. Ann Biomed Eng. 2010;38:1664–71.

    Article  Google Scholar 

  458. Yang X, Yang F, Walboomers XF, Bian Z, Fan M, Jansen JA. The performance of dental pulp stem cells on nanofibrous PCL/gelatin/nHA scaffolds. J Biomed Mater Res A. 2010;93A:247–57.

    CAS  Google Scholar 

  459. Viale-Bouroncle S, Bey B, Reichert TE, Schmalz G, Morsczeck C. β-Tricalcium-phosphate stimulates the differentiation of dental follicle cells. J Mater Sci Mater Med. 2011;22:1719–24.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

My special thanks to Mr. Guang Han from the Stockholm University for his generous work on getting and sending me pdf-files of inaccessible for me publications on the subject.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Dorozhkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorozhkin, S.V. Calcium orthophosphates in dentistry. J Mater Sci: Mater Med 24, 1335–1363 (2013). https://doi.org/10.1007/s10856-013-4898-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4898-1

Navigation