Skip to main content

Advertisement

Log in

Injectable collagen/α-tricalcium phosphate cement: collagen–mineral phase interactions and cell response

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A bone inspired material was obtained by incorporating collagen in the liquid phase of an α-tricalcium phosphate cement, either in solubilized or in fibrilized form. This material was able to set in situ, giving rise to a calcium deficient hydroxyapatite (CDHA)/collagen composite. The morphology and distribution of collagen in the composite was shown to be strongly affected by the collagen pre-treatment. The interactions between collagen and the inorganic phase were assessed by FTIR. A red shift of the amide I band was indicative of calcium chelation by the collagen carbonyl groups. The rate of CDHA formation was not affected when diluted collagen solutions (1 mg/ml) were used, whereas injectability improved. The presence of solubilized collagen, even in low amount (1 %), increased cell adhesion and proliferation on the composites. Still in the absence of osteogenic medium, significant ALP activity was detected both in the inorganic and the collagen-containing cements. The maximum ALP activity was advanced in the collagen-containing cement as compared to the inorganic cement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Du C, Cui FZ, Zhu XD, de Groot K. Three-dimensional nano-HAp/collagen matrix loading with osteogenic cells in organ culture. J Biomed Mater Res. 1999;44:407–15.

    Article  CAS  Google Scholar 

  2. Lickorish D, Ramshaw JAM, Werkmeister JA, Glattauer V, Howlett CR. Collagen–hydroxyapatite compostie prepared by biomimetic process. J Biomed Mater Res A. 2004;68:19–27.

    Article  Google Scholar 

  3. Perez RA, Ginebra MP, Spector M. Cell response to collagen–calcium phosphate cement scaffolds investigated for nonviral gene delivery. J Mater Sci Mater Med. 2011;22:887–97.

    Article  CAS  Google Scholar 

  4. Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials. 2001;22:1705–11.

    Article  CAS  Google Scholar 

  5. Chang MC, Ikoma T, Kikuchi M, Tanaka T. Preparation of a porous hydroxyapatite/collagen nanocomposite using glutaraldehyde as a crosslinkage agent. J Mater Sci Lett. 2001;20:1199–201.

    Article  CAS  Google Scholar 

  6. Kikuchi M, Ikoma T, Itoh S, Matsumoto HN, Koyama Y, Takakuda K, Shinomiya K, Tanaka J. Biomimetic synthesis of bone-like nanocomposites using the self-organization mechanism of hydroxyapatite and collagen. Compos Sci Technol. 2004;64:819–25.

    Article  CAS  Google Scholar 

  7. Perez RA, Altankov G, Jorge-Herrero E, Ginebra MP. Micro- and nanostructured hydroxyapatite-collagen microcarriers for bone tissue-engineering applications. J Tissue Eng Regen M. 2012;. doi:10.1002/term.530.

    Google Scholar 

  8. Perez RA, Kim HW, Ginebra MP. Polymeric additives to enhance the functional properties of calcium phosphate cements. J Tissue Eng. 2012;. doi:10.1177/2041731412439555.

    Google Scholar 

  9. Moreau JL, Weir MD, Xu HHK. Self-setting collagen–calcium phosphate bone cement: mechanical and cellular properties. J Biomed Mater Res A. 2009;91:605–13.

    Google Scholar 

  10. Touny AH, Bhaduri S, Brown PW. Formation of calcium deficient HAp/collagen composites by hydrolysis of α-TCP. J Mater Sci Mater Med. 2010;21:2533–41.

    Article  CAS  Google Scholar 

  11. Knepper-Nicolai B, Reinstorf A, Hofinger I, Flade K, Wenz R, Pompe W. Influence of osteocalcin and collagen I on the mechanical and biological properties of biocement D. Biomol Eng. 2002;19:227–31.

    Article  CAS  Google Scholar 

  12. Hempel U, Reinstorf A, Poppe M, Fischer U, Gelinsky M, Pompe W, Wenzel KW. Proliferation and differentiation of osteoblasts on biocement D modified with collagen type I and citric acid. J Biomed Mater Res B. 2004;71:130–43.

    Article  CAS  Google Scholar 

  13. Miyamoto Y, Ishikawa K, Takechi M, Toh T, Yuasa T, Nagayama M, Suzuki K. Basic properties of calcium phosphate cement containing atelocollagen in its liquid or powder phases. Biomaterials. 1998;19:707–15.

    Article  CAS  Google Scholar 

  14. Tamimi F, Kumarasami B, Doillon C, Gbureck U, Le Nihouannen D, Cabarcos EL, Barralet JE. Brushite–collagen composites for bone regeneration. Acta Biomater. 2008;4:1315–21.

    Article  CAS  Google Scholar 

  15. Jorge-Herrero E, Fonseca C, Barge AP, Turmay J, Olmo N, Fernandez P, Lizarbe MA, Paez JMG. Biocompatibility and calcification of bovine pericardium employed for the construction of cardiac bioprostheses treated with different chemical crosslink methods. Artif Organs. 2010;34:E168–76.

    Article  CAS  Google Scholar 

  16. Panzavolta S, Fini M, Nicoletti A, Bracci B, Rubini K, Giardino R, Bigi A. Porous composite scaffolds base don gelatin and partially hydrolyzed a tricalcium phosphate. Acta Biomater. 2009;5:636–43.

    Article  CAS  Google Scholar 

  17. Ginebra MP, Fernandez E, De Maeyer EA, Verbeeck RM, Boltong MG, Ginebra J, Driessens FC, Planell JA. Setting reaction and hardening of an apatitic calcium phosphate cement. J Dent Res. 1997;76:905–12.

    Article  CAS  Google Scholar 

  18. Berry EE. The structure and composition of some calcium deficient apatites. J Inorg Nucl Chem. 1967;29:317–27.

    Article  CAS  Google Scholar 

  19. Fowler BO. Infrared studies of apatites. I. Vibrational assignments for calcium, strontium and barium hydroxyapatites utilizing isotopic substitution. Inorg Chem. 1974;13:194–07.

    Google Scholar 

  20. Fowler BO, Moreno EC, Brown WE. Infrared spectra of hydroxyapatite, octacalcium phosphate and pyrolysed octacalcium phosphate. Arch Oral Biol. 1966;11:447–92.

    Article  Google Scholar 

  21. Friess W, Lee G. Basic thermoanalytical studies of insoluble collagen matrices. Biomaterials. 1996;17:2289–94.

    Article  CAS  Google Scholar 

  22. Renugopalakrishman V, Chandrakasan G, Moore S, Hutson TB, Berney CV, Bhatnagar RS. Bound water in collagen. Evidence from fourier transform infrared and fourier transform infrared photoacoustic spectroscopic study. Macromolecules. 1989;22: 4124.

    Google Scholar 

  23. Jackson M, Choo L, Watson PH, Halliday WC, Mantsch HH. Beware of connective tissue proteins: assignment and implications of collagen absorptions in infrared spectra of human tissues. Biochim Biophys Acta. 1995;1270:1–6.

    Article  Google Scholar 

  24. Mansoutre S, Colombet P, Van Damme H. Water retention and granular rheological behavior of fresh C3S paste as a function of concentration. Cement Concrete Res. 1999;29:1441–53.

    Article  CAS  Google Scholar 

  25. Rhee SH, Lee JD, Tanaka J. Nucleation of hydroxyapatite crystal through chemical interaction with collagen. J Am Ceram Soc. 2000;83:2890–2.

    Article  CAS  Google Scholar 

  26. Yingjun W, Gang W, Xiaofen C, Jiandong Y, Kun W. Rapid calcification on solution blending of homogenous PHBV/collagen composite. J Appl Polym Sci. 2009;112:963–70.

    Article  Google Scholar 

  27. Zhang W, Huang ZL, Liao SS, Cui FZ. Nucleation sites of calcium phosphate crystals during collagen mineralization. J Am Ceram Soc. 2003;86:1052–4.

    Article  CAS  Google Scholar 

  28. Keeney M, Collin E, Pandit A. Multi-channelled collagen–calcium phosphate scaffolds: their physical properties and human cell response. Tissue Eng C. 2009;15:265–73.

    Article  CAS  Google Scholar 

  29. Bradt JH, Mertig M, Teresiak A, Pompe W. Biomimetic mineralization of collagen by combined fibril assembly and calcium phosphate formation. Chem Mater. 1999;11:2694–701.

    Article  CAS  Google Scholar 

  30. Engel E, Del Valle S, Aparicio C, Altankov G, Asin L, Planell JA, Ginebra MP. Discerning the role of topography and ion exchange in cell response of bioactive tissue engineering scaffolds. Tissue Eng A. 2008;14:1341–51.

    Article  CAS  Google Scholar 

  31. Knabe C, Driessens FC, Planell JA, Gildenhaar R, Berger G, Reif D, Fitzner R, Radlanski RJ, Gross U. Evaluation of calcium phosphates and experimental calcium phosphate bone cements using osteogenic cultures. J Biomed Mater Res. 2000;52:498–508.

    Article  CAS  Google Scholar 

  32. Link DP, van den Dolder J, Wolke JGC, Jansen JA. The cytocompatibility and early osteogenic characteristics of an injectable calcium phosphate cement. Tissue Eng. 2007;13:493–500.

    Article  CAS  Google Scholar 

  33. Yuasa T, Miyamoto Y, Ishikawa K, Takechi M, Momota Y, Tatehara S, Nagayama M. Effects of apatite cements on proliferation and differentiation of human osteoblasts in vitro. Biomaterials. 2004;25:1159–66.

    Article  CAS  Google Scholar 

  34. Oreffo ROC, Driessens FCM, Planell JA, Triffitt JT. Growth and differentiation of human bone marrow osteoprogenitors on novel calcium phosphate cements. Biomaterials. 1998;19:1845–54.

    Article  CAS  Google Scholar 

  35. Heino J. The collagen family members as cell adhesion proteins. BioEssays. 2007;29:1001–10.

    Article  CAS  Google Scholar 

  36. Zhang W, Walboomers XF, Van Osch G, Van den Dolder J, Jansen JA. Hard tissue formation in a porous HA/TCP ceramic scaffold loaded with stromal cells derived from dental pulp and bone marrow. Tissue Eng. 2008;14:285–94.

    Google Scholar 

  37. Bjerre L, Bünger C, Baatrup A, Kassem M, Mygind T. Flow perfusion culture of human mesenchymal stem cells on coralline hydroxyapatite scaffolds with various pore sizes. J Biomed Mater Res A. 2011;97:251–63.

    Google Scholar 

  38. Liu Y, Shelton R, Gbureck U, Barralet J. Influence of calcium phosphate crystals morphology on the adhesion, spreading and growth of bone derived cells. J Biomed Mater Res A. 2009;90:972–80.

    CAS  Google Scholar 

  39. Gustavsson J, Ginebra MP, Engel E, Planell JA. Ion reactivity of calcium-deficient hydroxyapatite in standard cell culture media. Acta Biomater. 2011;7:4242–52.

    Article  CAS  Google Scholar 

  40. Pioletti DP, Takei H, Lin T, Van Landuyt P, Ma QJ, Kwon SY, Sung KL. The effects of calcium phosphate cement particles on osteoblast functions. Biomaterials. 2000;21:1103–14.

    Article  CAS  Google Scholar 

  41. Turhani D, Cvikl B, Watzinger E, Weissenbock M, Yerit K, Thurnher D, Lauer G, Ewers R. In vitro growth and differentiation of osteoblast-like cells on hydroxyapatite ceramic granule calcified from red algae. J Oral Maxillofac Surg. 2005;63:793–9.

    Article  Google Scholar 

  42. Ohgushi H, Dohi Y, Tamai S, Tabata S. Osteogenic differentiation of marrow stromal stem cells in porous hydroxyapatite ceramics. J Biomed Mater Res. 1993;27:1401–7.

    Article  CAS  Google Scholar 

  43. Mygind T, Stiehler M, Baatrup A, Li H, Zou X, Flyvbjerg A, Kassem M, Bunger C. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds. Biomaterials. 2007;28:1036–47.

    Article  CAS  Google Scholar 

  44. Rosa AL, Beloti MM, Van Noort R. Osteoblastic differentiation of cultured rat bone marrow cells on hydroxyapatite with different surface topography. Dent Mater. 2003;19:768–72.

    Article  CAS  Google Scholar 

  45. Dawson JI, Wahl DA, Lanham SA, Kanczler JM, Czernuszka JT, Oreffo ROC. Development of specific collagen scaffolds to support the osteogenic and chondrogenic differentiation of human bone marrow stromal cells. Biomaterials. 2008;29:3105–16.

    Article  CAS  Google Scholar 

  46. Mizuno M, Fujisawa R, Kuboki Y. Type I collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collagen-α2β1 integrin interaction. J Cell Physiol. 2000;184:207–13.

    Article  CAS  Google Scholar 

  47. Salasznyk RM, Williams WA, Boskey A, Batorsky A, Plopper GE. Adhesion to vitronectin and collagen I promotes osteogenic differentiation of human mesenchymal stem cells. J Biomed Biotechnol. 2004;2004:24–34.

    Article  Google Scholar 

  48. Takeuchi Y, Suzawa M, Kikuchi T, Nishida E, Fujita T, Matsumoto T. Differentiation and transforming growth factor-beta receptor down-regulation by collagen-α2β1 integrin interaction is mediated by focal adhesion kinase and its downstream signals in murine osteoblastic cells. J Biol Chem. 1997;272:29309–16.

    Article  CAS  Google Scholar 

  49. Carvalho RS, Kostenuik PJ, Salih E, Bumann A, Gerstenfeld LC. Selective adhesion of osteoblastic cells to different integrin ligands induces osteopontin gene expression. Matrix Biol. 2003;22:241–9.

    Article  CAS  Google Scholar 

  50. Mizuno M, Kuboki Y. Osteoblast-related gene expression of bone marrow cells during the osteoblastic differentiation induced by type I collagen. J Biochem. 2001;129:133–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Eduardo Jorge-Herrero at Clínica Puerta de Hierro in Madrid for kindly donating the collagen for this work, and F. Puig for his technical support. This study was supported by the Spanish Ministry of Science and Education through project MAT2009-13547. Support for MPG was also received though the prize “ICREA Academia” for excellence in research, funded by the Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria-Pau Ginebra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perez, R.A., Ginebra, MP. Injectable collagen/α-tricalcium phosphate cement: collagen–mineral phase interactions and cell response. J Mater Sci: Mater Med 24, 381–393 (2013). https://doi.org/10.1007/s10856-012-4799-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4799-8

Keywords

Navigation