Skip to main content
Log in

Structural and biomechanical characterizations of porcine myocardial extracellular matrix

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Extracellular matrix (ECM) of myocardium plays an important role to maintain a multilayered helical architecture of cardiomyocytes. In this study, we have characterized the structural and biomechanical properties of porcine myocardial ECM. Fresh myocardium were decellularized in a rotating bioreactor using 0.1 % sodium dodecyl sulfate solution. Masson’s trichrome staining and SEM demonstrated the removal of cells and preservation of the interconnected 3D cardiomyocyte lacunae. Movat’s pentachrome staining showed the preservation of cardiac elastin ultrastructure and vascular elastin distribution/alignment. DNA assay result confirmed a 98.59 % reduction in DNA content; the acellular myocardial scaffolds were found completely lack of staining for the porcine α-Gal antigen; and the accelerating enzymatic degradation assessment showed a constant degradation rate. Tensile and shear properties of the acellular myocardial scaffolds were also evaluated. Our observations showed that the acellular myocardial ECM possessed important traits of biodegradable scaffolds, indicating the potentials in cardiac regeneration and whole heart tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rosamond W, Flegal K, Friday G, Furie K, Go A, Greenlund K, et al. Heart disease and stroke statistics-2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2007;115(5):e69–171. doi:CIRCULATIONAHA.106.179918,10.1161/CIRCULATIONAHA.106.179918.

    Article  Google Scholar 

  2. Takemura G, Ohno M, Hayakawa Y, Misao J, Kanoh M, Ohno A, et al. Role of apoptosis in the disappearance of infiltrated and proliferated interstitial cells after myocardial infarction. Circ Res. 1998;82(11):1130–8.

    Article  CAS  Google Scholar 

  3. Sun Y, Weber KT. Infarct scar: a dynamic tissue. Cardiovasc Res. 2000;46(2):250–6. doi:S0008-6363(00)00032-8.

    Article  CAS  Google Scholar 

  4. Kelly D, Khan S, Cockerill G, Ng LL, Thompson M, Samani NJ et al. Circulating stromelysin-1 (MMP-3): a novel predictor of LV dysfunction, remodelling and all-cause mortality after acute myocardial infarction. Eur J Heart Fail. 2008;10(2):133–9. doi:10.1016/j.ejheart.2007.12.009.

    Google Scholar 

  5. Sharma R, Raghubir R. Stem cell therapy: a hope for dying hearts. Stem Cells Dev. 2007;16(4):517–36.

    Article  CAS  Google Scholar 

  6. Losordo DW, Vale PR, Symes JF, Dunnington CH, Esakof DD, Maysky M, et al. Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation. 1998;98(25):2800–4.

    Article  CAS  Google Scholar 

  7. Grauss RW, Winter EM, van Tuyn J, Pijnappels DA, Steijn RV, Hogers B, et al. Mesenchymal stem cells from ischemic heart disease patients improve left ventricular function after acute myocardial infarction. Am J Physiol. 2007;293(4):H2438–47.

    CAS  Google Scholar 

  8. Strauer BE, Kornowski R. Stem cell therapy in perspective. Circulation. 2003;107(7):929–34.

    Article  Google Scholar 

  9. Kellar RS, Shepherd BR, Larson DF, Naughton GK, Williams SK. Cardiac patch constructed from human fibroblasts attenuates reduction in cardiac function after acute infarct. Tissue Eng. 2005;11(11–12):1678–87.

    Article  CAS  Google Scholar 

  10. Barandon L, Couffinhal T, Dufourcq P, Alzieu P, Daret D, Deville C, et al. Repair of myocardial infarction by epicardial deposition of bone-marrow-cell-coated muscle patch in a murine model. Ann Thorac Surg. 2004;78(4):1409–17.

    Article  Google Scholar 

  11. Aboulafia-Etzion S, Leor J, Barbash IM, Battler A. Fixing a failing heart: molecular and cellular approaches. Harefuah. 1999;136(4):284–8.

    CAS  Google Scholar 

  12. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–6.

    Article  CAS  Google Scholar 

  13. Zimmermann WH, Melnychenko I, Eschenhagen T. Engineered heart tissue for regeneration of diseased hearts. Biomaterials. 2004;25(9):1639–47.

    Article  CAS  Google Scholar 

  14. Thompson RB, Emani SM, Davis BH, van den Bos EJ, Morimoto Y, Craig D et al. Comparison of intracardiac cell transplantation: autologous skeletal myoblasts versus bone marrow cells. Circulation. 2003;108 Suppl 1:II264–71.

    Google Scholar 

  15. Bursac N, Papadaki M, Cohen RJ, Schoen FJ, Eisenberg SR, Carrier R, et al. Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies. Am J Physiol. 1999;277(2 Pt 2):H433–44.

    CAS  Google Scholar 

  16. Carrier RL, Papadaki M, Rupnick M, Schoen FJ, Bursac N, Langer R, et al. Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol Bioeng. 1999;64(5):580–9.

    Article  CAS  Google Scholar 

  17. Birla RK, Borschel GH, Dennis RG, Brown DL. Myocardial engineering in vivo: formation and characterization of contractile, vascularized three-dimensional cardiac tissue. Tissue Eng. 2005;11(5–6):803–13.

    Article  CAS  Google Scholar 

  18. Birla RK, Borschel GH, Dennis RG. In vivo conditioning of tissue-engineered heart muscle improves contractile performance. Artif Organs. 2005;29(11):866–75.

    Article  Google Scholar 

  19. Borschel GH, Dow DE, Dennis RG, Brown DL. Tissue-engineered axially vascularized contractile skeletal muscle. Plast Reconstr Surg. 2006;117(7):2235–42.

    Article  CAS  Google Scholar 

  20. Vouyouka AG, Powell RJ, Ricotta J, Chen H, Dudrick DJ, Sawmiller CJ, et al. Ambient pulsatile pressure modulates endothelial cell proliferation. J Mol Cell Cardiol. 1998;30(3):609–15.

    Article  CAS  Google Scholar 

  21. Fujimoto KL, Guan J, Oshima H, Sakai T, Wagner WR. In vivo evaluation of a porous, elastic, biodegradable patch for reconstructive cardiac procedures. The Annals of thoracic surgery. 2007;83(2):648–54. doi:10.1016/j.athoracsur.2006.06.085.

  22. Fujimoto KL, Tobita K, Merryman WD, Guan J, Momoi N, Stolz DB, et al. An elastic, biodegradable cardiac patch induces contractile smooth muscle and improves cardiac remodeling and function in subacute myocardial infarction. J Am Coll Cardiol. 2007;49(23):2292–300.

    Article  CAS  Google Scholar 

  23. Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res. 2002;60(4):613–21. doi:10.1002/jbm.10167.

    Article  CAS  Google Scholar 

  24. Smith IO, Liu XH, Smith LA, Ma PX. Nanostructured polymer scaffolds for tissue engineering and regenerative medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(2):226–36. doi:10.1002/wnan.26.

    Article  CAS  Google Scholar 

  25. Ozawa T, Mickle DA, Weisel RD, Koyama N, Wong H, Ozawa S, et al. Histologic changes of nonbiodegradable and biodegradable biomaterials used to repair right ventricular heart defects in rats. J Thorac Cardiovasc Surg. 2002;124(6):1157–64.

    Article  Google Scholar 

  26. Ozawa T, Mickle DA, Weisel RD, Koyama N, Ozawa S, Li RK. Optimal biomaterial for creation of autologous cardiac grafts. Circulation. 2002;106(12 Suppl 1):I176–82.

    Google Scholar 

  27. Engelmayr GC Jr, Cheng M, Bettinger CJ, Borenstein JT, Langer R, Freed LE. Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat Mater. 2008;7(12):1003–10.

    Article  CAS  Google Scholar 

  28. Hutmacher DW, Goh JC, Teoh SH. An introduction to biodegradable materials for tissue engineering applications. Ann Acad Med Singap. 2001;30(2):183–91.

    CAS  Google Scholar 

  29. Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. J Biomater Sci Polym Ed. 2001;12(1):107–24.

    Article  CAS  Google Scholar 

  30. Grad S, Zhou L, Gogolewski S, Alini M. Chondrocytes seeded onto poly (l/dl-lactide) 80/20% porous scaffolds: a biochemical evaluation. J Biomed Mater Res A. 2003;66(3):571–9. doi:10.1002/jbm.a.10007.

    Article  Google Scholar 

  31. Weber B, Emmert MY, Schoenauer R, Brokopp C, Baumgartner L, Hoerstrup SP. Tissue engineering on matrix: future of autologous tissue replacement. Semin Immunopathol 33(3):307–15. doi:10.1007/s00281-011-0258-8.

  32. Hodde J. Naturally occurring scaffolds for soft tissue repair and regeneration. Tissue Eng. 2002;8(2):295–308. doi:10.1089/107632702753725058.

    Article  CAS  Google Scholar 

  33. Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006;367(9518):1241–6. doi:10.1016/S0140-6736(06)68438-9.

    Google Scholar 

  34. Wang X, Lin P, Yao Q, Chen C. Development of small-diameter vascular grafts. World J Surg. 2007;31(4):682–9. doi:10.1007/s00268-006-0731-z.

    Article  Google Scholar 

  35. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27(19):3675–83.

    CAS  Google Scholar 

  36. Liao J, Joyce EM, Sacks MS. Effects of decellularization on mechanical and structural properties of the porcine aortic valve leaflets. Biomaterials. 2008;29(8):1065–74.

    Article  CAS  Google Scholar 

  37. Borschel GH, Huang YC, Calve S, Arruda EM, Lynch JB, Dow DE, et al. Tissue engineering of recellularized small-diameter vascular grafts. Tissue Eng. 2005;11(5–6):778–86.

    Article  CAS  Google Scholar 

  38. Borschel GH, Dennis RG, Kuzon WM, Jr. Contractile skeletal muscle tissue-engineered on an acellular scaffold. Plastic Reconstr Surg. 2004;113(2):595–602 (discussion 3–4).

    Google Scholar 

  39. Badylak SF, Tullius R, Kokini K, Shelbourne KD, Klootwyk T, Voytik SL, et al. The use of xenogeneic small intestinal submucosa as a biomaterial for Achilles tendon repair in a dog model. J Biomed Mater Res. 1995;29(8):977–85.

    Article  CAS  Google Scholar 

  40. Leor J, Aboulafia-Etzion S, Dar A, Shapiro L, Barbash IM, Battler A et al. Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation 2000;102(19 Suppl 3):III56–61.

  41. Badylak SF. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl Immunol 2004;12(3–4):367–77. doi:10.1016/j.trim.2003.12.016.

    Google Scholar 

  42. Hoshiba T, Lu H, Kawazoe N, Chen G. Decellularized matrices for tissue engineering. Expert Opin Biol Ther 10(12):1717–28. doi:10.1517/14712598.2010.534079.

  43. Knight RL, Wilcox HE, Korossis SA, Fisher J, Ingham E. The use of acellular matrices for the tissue engineering of cardiac valves. Proc Inst Mech Eng H. 2008;222(1):129–43.

    Article  CAS  Google Scholar 

  44. Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 2008;14(2):213–21.

    Article  CAS  Google Scholar 

  45. Wang B, Borazjani A, Tahai M, Curry AL, Simionescu DT, Guan J et al. Fabrication of cardiac patch with decellularized porcine myocardial scaffold and bone marrow mononuclear cells. J Biomed Mater Res A 94(4):1100–10. doi:10.1002/jbm.a.32781.

  46. Godier-Furnemont AF, Martens TP, Koeckert MS, Wan L, Parks J, Arai K et al. Composite scaffold provides a cell delivery platform for cardiovascular repair. Proc Natl Acad Sci USA 108(19):7974–9.

  47. Badylak SF, Taylor D, Uygun K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Ann Review Biomed Eng 13:27–53.

  48. Wainwright JM, Czajka CA, Patel UB, Freytes DO, Tobita K, Gilbert TW et al. Preparation of cardiac extracellular matrix from an intact porcine heart. Tissue Eng Part C Methods. 2010;16(3):525–32.

    Google Scholar 

  49. Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32(12):3233–43.

    Google Scholar 

  50. Witzenburg C, Raghupathy R, Kren SM, Taylor DA, Barocas VH. Mechanical changes in the rat right ventricle with decellularization. J Biomech.

  51. Streeter D, Powers WE, Ross A, Torrent-Guasp F. Three-Dimensional Fiber Orientation in the Mammalian Left Ventricular Wall. Cardiovascular System Dynamics. Cambridge: M.I.T Press; 1978. p. 73.

  52. Streeter DD Jr, Hanna WT. Engineering mechanics for successive states in canine left ventricular myocardium. II. Fiber angle and sarcomere length. Circ Res. 1973;33(6):656–64.

    Article  Google Scholar 

  53. Streeter DD Jr, Spotnitz HM, Patel DP, Ross J Jr, Sonnenblick EH. Fiber orientation in the canine left ventricle during diastole and systole. Circ Res. 1969;24(3):339–47.

    Article  Google Scholar 

  54. Macchiarelli G, Ohtani O. Endomysium in left ventricle. Heart (British Cardiac Society). 2001;86(4):416.

    Article  CAS  Google Scholar 

  55. Weber KT. Cardiac interstitium in health and disease: the fibrillar collagen network. J Am Coll Cardiol. 1989;13(7):1637–52.

    Article  CAS  Google Scholar 

  56. Holmes JW, Borg TK, Covell JW. Structure and mechanics of healing myocardial infarcts. Annu Rev Biomed Eng. 2005;7:223–53.

    Article  CAS  Google Scholar 

  57. Humphery JD. Cardiovascular Solid Mechanics. Berlin: Springer; 2002.

  58. Strokan V, Molne J, Svalander CT, Breimer ME. Heterogeneous expression of Gal alpha1-3Gal xenoantigen in pig kidney: a lectin and immunogold electron microscopic study. Transplantation. 1998;66(11):1495–503.

    Article  CAS  Google Scholar 

  59. Azimzadeh A, Wolf P, Thibaudeau K, Cinqualbre J, Soulillou JP, Anegon I. Comparative study of target antigens for primate xenoreactive natural antibodies in pig and rat endothelial cells. Transplantation. 1997;64(8):1166–74.

    Article  CAS  Google Scholar 

  60. Tedder ME, Liao J, Weed B, Stabler C, Zhang H, Simionescu A, et al. Stabilized collagen scaffolds for heart valve tissue engineering. Tissue Eng Part A. 2009;15(6):1257–68.

    Article  CAS  Google Scholar 

  61. Shanmugasundaram N, Ravichandran P, Reddy PN, Ramamurty N, Pal S, Rao KP. Collagen-chitosan polymeric scaffolds for the in vitro culture of human epidermoid carcinoma cells. Biomaterials. 2001;22(14):1943–51. doi:S0142961200002209.

    Article  CAS  Google Scholar 

  62. Sierad LN, Simionescu A, Albers C, Chen J, Maivelett J, Tedder ME et al. Design and testing of a pulsatile conditioning system for dynamic endothelialization of polyphenol-stabilized tissue engineered heart valves. Cardiovasc Eng Technol. 2009;1(2):138–53. doi:10.1007/s13239-010-0014-6.

    Google Scholar 

  63. Roeder BA, Kokini K, Sturgis JE, Robinson JP, Voytik-Harbin SL. Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J Biomech Eng. 2002;124(2):214–22.

    Article  Google Scholar 

  64. Saffitz JE, Kanter HL, Green KG, Tolley TK, Beyer EC. Tissue-specific determinants of anisotropic conduction velocity in canine atrial and ventricular myocardium. Circ Res. 1994;74(6):1065–70.

    Article  CAS  Google Scholar 

  65. Fung YC. Biomechanics: mechanical properties of living tissues. New York: Springer; 1981.

    Google Scholar 

  66. Hanley PJ, Young AA, LeGrice IJ, Edgar SG, Loiselle DS. 3-Dimensional configuration of perimysial collagen fibres in rat cardiac muscle at resting and extended sarcomere lengths. J Physiol. 1999;517(Pt 3):831–7. doi:PHY_9009.

    Article  CAS  Google Scholar 

  67. Fomovsky GM, Thomopoulos S, Holmes JW. Contribution of extracellular matrix to the mechanical properties of the heart. J Mol Cell Cardiol. 2010;48(3):490–6. doi:10.1016/j.yjmcc.2009.08.003.

    Google Scholar 

  68. Baraki H, Tudorache I, Braun M, Höffler K, Görler A, Lichtenberg A, et al. Orthotopic replacement of the aortic valve with decellularized allograft in a sheep model. Biomaterials. 2009;30(31):6240–6.

    Article  CAS  Google Scholar 

  69. Goo HC, Hwang YS, Choi YR, Cho HN, Suh H. Development of collagenase-resistant collagen and its interaction with adult human dermal fibroblasts. Biomaterials. 2003;24(28):5099–113. doi:S0142961203004319.

    Article  CAS  Google Scholar 

  70. Guan J, Wang F, Li Z, Chen J, Guo X, Liao J et al. The stimulation of the cardiac differentiation of mesenchymal stem cells in tissue constructs that mimic myocardium structure and biomechanics. Biomaterials. 2011;32(24):5568–80. doi:10.1016/j.biomaterials.2011.04.038.

    Google Scholar 

Download references

Acknowledgments

This study is supported by NIH National Heart, Lung, and Blood Institute grant HL097321. The authors also would like acknowledge the support from Health Resources and Services Administration (HRSA) (DHHS R1CRH10429-01-00) and the MAFES Strategic Research Initiative Funding (CRESS MIS-741110). The authors thank William Monroe and Amanda Lawrence (MSU EM center) for help on SEM imaging. Support from Sansing Meat Service (Maben, MS) is also greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, B., Tedder, M.E., Perez, C.E. et al. Structural and biomechanical characterizations of porcine myocardial extracellular matrix. J Mater Sci: Mater Med 23, 1835–1847 (2012). https://doi.org/10.1007/s10856-012-4660-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4660-0

Keywords

Navigation