Skip to main content

Advertisement

Log in

Ceramic/metal biocidal nanocomposites for bone-related applications

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Hydroxyapatite/silver nanocomposites have been designed and synthesized as an engineering material for biomedical applications. The hydroxyapatite matrix was synthesized by a sol–gel method and, subsequently, the Ag nanoparticles were deposited by heterogeneous precipitation followed by two different reduction routes: thermal or chemical. Both sets were studied and compared and, in all cases, the metal nanoparticles appear perfectly isolated and attached to the surface of the hydroxyapatite. The average metal particle size is below 10 nm, allowing an important contact surface between silver and the microorganisms. The antimicrobial behavior against common bacteria showed a high effectiveness, well above the commercial level, as well as against yeast, in the case of the chemically reduced sample. Due to the nanocomposite microstructure, only a negligible portion of metal was released to the lixiviated liquid after the biocide tests, minimizing the risk of toxicity. These nanocomposites offer a solution to the infections on the surface of implants, one of the main problems in reaching a suitable level of osseointegration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Torrecillas RR, Moya JS, Diaz LA, Bartolome JF, Fernandez A, Lopez-Esteban S. Nanotechnology in joint replacement. Wiley Interdisciplinary Reviews: Nanomedicine. 2007;1:540–52.

    Article  Google Scholar 

  2. Chen W, Liu Y, Courtney HS, Bettenga M, Agrawal CM, Bumgardner JD, Ong JL. In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials. 2006;27:5512–7.

    Article  CAS  Google Scholar 

  3. Socransky SS, Haffajee AD. Dental biofilms: difficult therapeutic targets. Periodontology. 2002;28:12–55.

    Article  Google Scholar 

  4. Patel R. Biofilms and antimicrobial resistance. Clin Orthop Relat Res. 2005;437:41–7.

    Article  Google Scholar 

  5. Moya JS, Lopez-Esteban S, Pecharroman C. The challenge of ceramic/metal (micro- and nano-) composites. Prog Mater Sci. 2007;52:1017–90.

    Article  CAS  Google Scholar 

  6. Fahrenholtz WG, Ellerby DT, Loehman RE. Al2O3–Ni composites with high strength and fracture toughness. J Am Ceram Soc. 2000;83:1279–80.

    Article  CAS  Google Scholar 

  7. Williamson RL, Bruck HA, Wang XL, Watkins TR, Feng YZ, Clarke DR. Residual strains in an Al2O3–Ni joint bonded with a composite interlayer. J Am Ceram Soc. 1998;81:1541–9.

    Google Scholar 

  8. Diaz M, Bartolomé JF, Requena J, Moya JS. Wet processing of mullite/molybdenum composites. J Eur Ceram Soc. 2000;20:1907–14.

    Article  CAS  Google Scholar 

  9. Wildan M, Edrees HJ, Hendry A. Ceramic matrix composites of zirconia reinforced with metal particles. Mater Chem Phys. 2002;75:276–83.

    Article  CAS  Google Scholar 

  10. Xiang X, Zu XT, Zhu S, Wang LM. Optical properties of metallic nanoparticles in Ni-ion-implanted α-Al2O3 single crystals. Appl Phys Lett. 2004;84:52–4.

    Article  CAS  Google Scholar 

  11. Díaz M, Barba F, Miranda M, Guitián F, Torrecillas R, Moya JS. Synthesis and antimicrobial activity of a silver-hydroxyapatite nanocomposite. J Nanomater. 2009;2009:498505.

  12. Miranda M, Fernández A, Díaz M, Esteban-Tejeda L, López-Esteban S, Malpartida F, Torrecillas R, Moya JS. Silver-hydroxyapatite nanocomposites as bactericidal and fungicidal materials. Int J Mater Res. 2010;101:1.

    Google Scholar 

  13. Legerps RZ, Traity OR, Legeros JP, Edward K, Shirra WP. Apatite crystallites: effects of carbonate on morphology. Science. 1967;155:1409–11.

    Article  Google Scholar 

  14. Noro T, Ito K. Biomechanical behaviour of hydroxyapatite as bone substitute material in a loaded implant model. On the surface strain measurement and the maximum compression strength determination of material crash. Biomed Mater Eng. 1999;9:319–24.

    CAS  Google Scholar 

  15. Ylinen P, Raekallio M, Taurio R, Vihtonen R, Vainionpää S, Partio EK, Törmälä P, Rokkanen P. Coralline hydroxyapatite reinforced with polylactide fibres in lumbar interbody implantation. J Mater Sci Mater Med. 2005;16:325–31.

    Article  CAS  Google Scholar 

  16. Hao L, Savalani MM, Zhang Y, Tanner KE, Heath RJ, Harris RA. Characterization of selective laser-sintered hydroxyapatite-based biocomposite structures for bone replacement. Proceedings: Mathematical, Physical and Engineering Sciences. 2007;463:1857–1869.

    Google Scholar 

  17. Palazzo B, Sidoti MC, Roveri N, Tampieri A, Sandri M, Bertolazzi L, Galbusera F, Dubini G, Vena P, Contro R. Controlled drug delivery from porous hydroxyapatite grafts: an experimental and theoretical approach. Mater Sci Eng C. 2005;25:207–13.

    Article  Google Scholar 

  18. Krisanapiboon A, Buranapanitkit B, Oungbho B. Biocompatibility of hydroxyapatite composite as a local drug delivery system. J Orthop Surg. 2006;14:315–8.

    CAS  Google Scholar 

  19. Ravelingien M, Smets N, Mullens S, Luyten J, Vervaet C, Remon JP. Local drug delivery from hydroxyapatite ceramic fibres. 4th European Conference of the International Federation for Medical and Biological Engineering, IFMBE Proceedings. 2009;22:2269–2272.

  20. Venugopal J, Prabhakaran MP, Zhang Y, Low S, Choon AT, Ramakrishna S. Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering. Phil Trans R Soc A. 2010;368:2065–81.

    Article  CAS  Google Scholar 

  21. Qian P, Jiang F, Huang P, Zhou S, Weng J, Bao C, Zhang C, Yu H. A novel porous bioceramics scaffold by accumulating hydroxyapatite spherules for large bone tissue engineering in vivo. I. preparation and characterization of scaffold. J Biomed Mater Res A. 2010;93A:920–9.

    Google Scholar 

  22. Bonfield W. Designing porous scaffolds for tissue engineering. Philos Transact A Math Phys Eng Sci. 2006;364:227–32.

    Article  CAS  Google Scholar 

  23. Liu JK, Yang XH, Tian XG. Preparation of silver/hydroxyapatite nanocomposite spheres. Powder Technol. 2008;184:21–4.

    Article  CAS  Google Scholar 

  24. Percival SL, Bowler PG, Russell D. Bacterial resistance to silver in wound care. J Hosp Infect. 2005;60:1–7.

    Article  CAS  Google Scholar 

  25. Pourbaix M. Atlas of electrochemical equilibria in aqueous solutions. Houston (Texas): National Association of corrosion Engineers; 1974.

  26. Thomas S, Nair SK, Jamal EMA, Al-Harthi SH, Varma MR, Anantharaman MR. Size-dependent surface plasmon resonance in silver silica nanocomposites. Nanotechnology. 2008;19:075710.

    Article  Google Scholar 

  27. Esteban-Cubillo A, Diaz C, Fernandez A, Diaz LA, Pecharroman C, Torrecillas R, Moya JS. Silver nanoparticles supported on α-, η- and δ-alumina. J Eur Ceram Soc. 2006;26:1–7.

    Article  CAS  Google Scholar 

  28. Arumugan SK, Sastry TP, Sreedhar B, Mandal AB. One step synthesis of silver nanorods by autoreduction of aqueous silver ions with hydroxyapatite: an inorganic–inorganic hybrid nanocomposite. J Biomed Mater Res A. 2007;80A:391–8.

    Article  Google Scholar 

  29. Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007;73:1712–20.

    Article  CAS  Google Scholar 

  30. Panáček A, Kvítek L, Prucek R, Kolář M, Večeřová R, Pizúrová N, Sharma VK, Nevěčná T, Zbořil R. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B. 2006;110:16248–53.

    Article  Google Scholar 

  31. Esteban-Cubillo A, Pecharromán C, Aguilar E, Santarén J, Moya JS. Antibacterial activity of copper monodispersed nanoparticles into sepiolite. J Mater Sci. 2006;41:5208–12.

    Article  CAS  Google Scholar 

  32. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH. Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med. 2007;3:95–101.

    Article  CAS  Google Scholar 

  33. Cabal B, Torrecillas R, Malpartida F, Moya JS. Heterogeneous precipitation of silver nanoparticles on kaolinite plates. Nanotechnology. 2010;21:475705.

    Google Scholar 

  34. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci. 2004;275:177–82.

    Article  CAS  Google Scholar 

  35. Ayala-Núñez N, Lara-Villegas H, del Carmen Ixtepan Turrent L and Rodríguez-Padilla C. Silver nanoparticles toxicity and bactericidal effect against methicillin-resistant Staphylococcus aureus: nanoscale does matter. Nanobiotechnology. 2009;5:2–9.

Download references

Acknowledgments

This work was supported by the Spanish Ministry of Science and Innovation (MICINN) under the project MAT2009-14542-C02 and by the Spanish National Research Council (CSIC) under the PIE Project 200860I118. Miriam Miranda has been supported by the Government of the Principality of Asturias under the Severo Ochoa Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Miranda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miranda, M., Fernández, A., Lopez-Esteban, S. et al. Ceramic/metal biocidal nanocomposites for bone-related applications. J Mater Sci: Mater Med 23, 1655–1662 (2012). https://doi.org/10.1007/s10856-012-4642-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4642-2

Keywords

Navigation