Skip to main content

Advertisement

Log in

In vitro astrocyte and cerebral endothelial cell response to electrospun poly(ε-caprolactone) mats of different architecture

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This work focuses on the evaluation of the potential use of electrospun poly(ε-caprolactone) (PCL) micrometric and/or sub-micrometric fibrous membranes for rat hippocampal astrocyte (HA) and rat cerebro-microvascular endothelial cell (CEC) cultures. Both mats supported cell adhesion, proliferation, cellular phenotype and spreading. Microfibrous mats allowed cellular infiltration, while both HAs and CECs were unable to migrate within the sub-micrometric fibrous mat, leaving an acellularized inner region. This finding was correlated to the presence of larger voids within electrospun PCL microfibrous mats, suggesting that the morphology should be accurately selected for the realization of a cell environment-mimicking mat. Based on our results, the proper fiber architecture can be regarded as a crucial issue to be considered in order to deal with suitable polymeric mats tailored for specific in vitro application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Greiner A, Wendorff JH. Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed Engl. 2007;46(30):5670–703.

    Article  CAS  PubMed  Google Scholar 

  2. Del Gaudio C, Bianco A, Folin M, Baiguera S, Grigioni M. Structural characterisation and cell response evaluation of electrospun PCL membranes: micrometric vs sub-micrometric fibers. J Biomed Mater Res A. 2009;89(4):1028–39.

    PubMed  Google Scholar 

  3. Cucullo L, Aumayr B, Rapp E, Janigro D. Drug delivery and in vitro models of the blood-brain barrier. Curr Opin Drug Discov Devel. 2005;8(1):89–99.

    CAS  PubMed  Google Scholar 

  4. Unterberg AW, Stover J, Kress B, Kiening KL. Edema and brain trauma. Neuroscience. 2004;129(4):1021–9.

    Article  CAS  PubMed  Google Scholar 

  5. Latour LL, Kang DW, Ezzeddine MA, Chalela JA, Warach S. Early blood–brain barrier disruption in human focal brain ischemia. Ann Neurol. 2004;56(4):468–77.

    Article  PubMed  Google Scholar 

  6. van der FM, Hoppenreijs S, van Rensburg AJ, Ruyken M, Kolk AH, Springer P, et al. Vascular endothelial growth factor and blood–brain barrier disruption in tuberculous meningitis. Pediatr Infect Dis J. 2004;23(7):608–13.

  7. Lee SW, Kim WJ, Park JA, Choi YK, Kwon YW, Kim KW. Blood–brain barrier interfaces and brain tumors. Arch Pharm Res. 2006;29(4):265–75.

    Article  CAS  PubMed  Google Scholar 

  8. Cipolla MJ, Crete R, Vitullo L, Rix RD. Transcellular transport as a mechanism of blood–brain barrier disruption during stroke. Front Biosci. 2004;9:777–85.

    Article  CAS  PubMed  Google Scholar 

  9. Stamatovic SM, Dimitrijevic OB, Keep RF, Andjelkovic AV. Inflammation and brain edema: new insights into the role of chemokines and their receptors. Acta Neurochir Suppl. 2006;96:444–50.

    Article  CAS  PubMed  Google Scholar 

  10. Kalaria RN. The blood–brain barrier and cerebral microcirculation in Alzheimer disease. Cerebrovasc Brain Metab Rev. 1992;4(3):226–60.

    CAS  PubMed  Google Scholar 

  11. Minagar A, Alexander JS. Blood–brain barrier disruption in multiple sclerosis. Mult Scler. 2003;9(6):540–9.

    Article  CAS  PubMed  Google Scholar 

  12. McCarthy KD, de Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol. 1980;85(3):890–902.

    Article  CAS  PubMed  Google Scholar 

  13. Conconi MT, Lora S, Baiguera S, Boscolo E, Folin M, Scienza R, et al. In vitro culture of rat neuromicrovascular endothelial cells on polymeric scaffolds. J Biomed Mater Res A. 2004;71(4):669–74.

    Article  PubMed  Google Scholar 

  14. Chew SY, Wen Y, Dzenis Y, Leong KW. The role of electrospinning in the emerging field of nanomedicine. Curr Pharm Design. 2006;12(36):4751–70.

    Article  CAS  Google Scholar 

  15. Chiarini A, Dal Pra I, Menapace L, Pacchiana R, Whitfield JF, Armato U. Soluble amyloid b-peptide and myelin basic protein strongly stimulate, alone and in synergism with combined proinflammatory cytokines, the expression of functional nitric oxide synthase-2 in normal adult human astrocytes. Int J Mol Med. 2005;16:801–7.

    CAS  PubMed  Google Scholar 

  16. Gerardo-Nava J, Führmann T, Klinkhammer K, Seiler N, Mey J, Klee D, et al. Human neural cell interactions with orientated electrospun nanofibers in vitro. Nanomed. 2009;4(1):11–30.

    Article  CAS  Google Scholar 

  17. Brynda E, Houska M, Kysilka J, Prádný M, Lesný P, Jendelová P, et al. Surface modification of hydrogels based on poly(2-hydroxyethyl methacrylate) with extracellular matrix proteins. J Mater Sci Mater Med. 2009;20(4):909–15.

    Article  CAS  PubMed  Google Scholar 

  18. Xu C, Yang F, Wang S, Ramakrishna S. In vitro study of human vascular endothelial cell function on materials with various surface roughness. J Biomed Mater Res A. 2004;71(1):154–61.

    Article  PubMed  Google Scholar 

  19. Chung TW, Liu DZ, Wang SS. Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale Biomaterials. 2003;24(25):4655–61.

    CAS  Google Scholar 

  20. Thapa A, Webster TJ, Haberstroh KM. Polymers with nano-dimensional surface features enhance bladder smooth muscle cell adhesion. J Biomed Mater Res A. 2003;67(4):1374–83.

    Article  PubMed  Google Scholar 

  21. Ramakrishna S, Fujihara K, Teo WE, Lim TC, Ma Z. An introduction to electrospinning and nanofibers. Singapore: World Scientific Publishing; 2005.

    Book  Google Scholar 

  22. Jarusuwannapoom T, Hongrojjanawiwat W, Jitjaicham S, Wannatong L, Nithitanakul M, Pattamaprom C, et al. Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers. Eur. Polymer. J. 2005;41:409–21.

    Article  CAS  Google Scholar 

  23. Kwon IK, Kidoaki S, Matsuda T. Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Biomaterials. 2005;26(18):3929–39.

    Article  CAS  PubMed  Google Scholar 

  24. Mo XM, Xu CY, Kotaki M, Ramakrishna S. Electrospun P(LLA-CL) nanofiber: a biomimetic extarcellular matrix for smooth muscle cells and endothelial cell proliferation. Biomaterials. 2004;25(10):1883–90.

    Article  CAS  PubMed  Google Scholar 

  25. Carampin P, Conconi MT, Lora S, Menti AM, Baiguera S, Bellini S, et al. Electrospun polyphosphazene nanofibers for in rat endothelial cells proliferation. J Biomed Mater Res A. 2007;80(3):661–8.

    PubMed  Google Scholar 

  26. Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang ZM. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B Appl Biomater. 2005;72(1):156–65.

    Article  PubMed  Google Scholar 

  27. Pham QP, Sharma U, Mikos AG. Electrospun poly(ε-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules. 2006;7(10):2796–805.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research has been supported by PRIN 2006 fundings “Progettazione e realizzazione di scaffolds nanostrutturati organici, inorganici ed ibridi da utilizzare in medicina rigenerativa come substrati per il differenziamento di cellule staminali”. The authors wish to thank Dr. Francesca Nanni and Prof. Giampiero Montesperelli (Department of Chemical Science and Technology, University of Rome “Tor Vergata”) for SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcella Folin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baiguera, S., Del Gaudio, C., Fioravanzo, L. et al. In vitro astrocyte and cerebral endothelial cell response to electrospun poly(ε-caprolactone) mats of different architecture. J Mater Sci: Mater Med 21, 1353–1362 (2010). https://doi.org/10.1007/s10856-009-3944-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3944-5

Keywords

Navigation