Skip to main content

Advertisement

Log in

Dissolution characteristics of extrusion freeformed hydroxyapatite–tricalcium phosphate scaffolds

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The dissolution behaviour of calcium phosphate filaments made by extrusion freeforming for hard tissue scaffolds was measured. The solubility of filaments with different HA/β-TCP ratios sintered at temperatures from 1,100 to 1,300°C was measured under simulated physiological conditions (tris buffer solution: tris(hydroxyl) methyl–aminomethane–HCl), pH 7.4, 37°C). Calcium and phosphate concentrations were measured separately by inductively coupled plasma (ICP) atomic emission spectroscopy. Surface morphologies and composition before and after immersion were analyzed by SEM and EDS. The results clearly show that as the β-TCP content increased, the dissolution increased. Higher sintering temperatures, with consequent closure of surface pores, resulted in lower dissolution. Examination of the surface suggested dissolution on preferred sites by pitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B.Y. Tay, J.R.G. Evans, M.J. Edirisinghe, Solid freeform fabrication of ceramics. Int. Mater. Rev. 48, 341–370 (2003)

    Article  CAS  Google Scholar 

  2. S. Yang, K.F. Leong, Z. Du, C.K. Chua, The design of scaffolds for use in tissue engineering Part II: rapid prototyping techniques. Tissue Eng. 8, 1–12 (2002)

    Article  CAS  Google Scholar 

  3. I. Grida, J.R.G. Evans, Extrusion freeforming of ceramics through fine nozzles. J. Eur. Ceram. Soc. 23, 629–635 (2003)

    Article  CAS  Google Scholar 

  4. F.C. Gomes de Sousa, J.R.G. Evans, Sintered hydroxyapatite latticework for bone substitute. J. Am. Ceram. Soc. 86, 517–519 (2003)

    Article  CAS  Google Scholar 

  5. M. Greulich, M. Greul, T. Pintat, Fast functional prototypes via multiphase jet solidification. Rapid Prototyping J. 1, 20–25 (1995)

    Article  Google Scholar 

  6. H. Yuan, K. Kurashina, J.D. de Bruijn, Y.B. Li, K. de Groot, X.D. Zhang, A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials 20, 1799–1806 (1999)

    Article  CAS  Google Scholar 

  7. R. Fujita, A. Yokoyama, T. Kawasaki, T. Kohgo, Bone augmentation osteogenesis using hydroxyapatite and beta-tricalcium phosphate blocks. J. Oral Maxillofac. Surg. 61, 1045–1053 (2003)

    Article  Google Scholar 

  8. B. Peter, D.P. Pioletti, S. Laib, B. Bujoli, P. Pilet, P. Janvier, J. Guicheux, P.-Y. Zambelli, J.-M. Bouler, O. Gauthier, Calcuim phosphate drug delivery system: influence of local zoledronate release on bone implant osteointegration. Bone 36, 52–60 (2005)

    Article  CAS  Google Scholar 

  9. B. Leukers, H. Gülkan, S. Irsen, S. Milz, C. Tille, M. Schieker, H. Seitz, Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J. Mater. Sci.: Mater. Med. 16, 1121–1124 (2005)

    Article  CAS  Google Scholar 

  10. T. Fujiu, M. Ogino, M. Kariya, T. Ishimura, New explanation of the bonding behavior of fluorine containing bioglass. J. Non-Cryst. Solid 56, 417–422 (1983)

    Article  CAS  Google Scholar 

  11. K. Kurashina, H. Kurita, Q. Wu, A. Ohtsuka, H. Kobayashi, Ectopic osteogenesis with biphasic ceramics of hydroxyapatite and tricalcium phosphate in rabbits. Biomaterials 23, 407–412 (2002)

    Article  CAS  Google Scholar 

  12. G. Takahiro, K. Tatsuyoshi, I. Takuo, Y. Satoshi, K. Hirotaka, Y. Aiichiro, M. Koichi, Resorption of synthetic porous hydrioxyapatite and replacement by newly formed bone. J. Orthop. Sci. 6, 444–447 (2004)

    Google Scholar 

  13. M.T. Fulmer, I.C. Ison, C.R. Hankermayer, B.R. Constantz, J. Ross, Measurements of the solubilities and dissolution rates of several hydroxyapatite. Biomaterials 23, 751–755 (2002)

    Article  CAS  Google Scholar 

  14. F. Fazan, P.M. Marquis, Dissolution behavior of plasma-sprayed hydroxyapatite coatings. J. Mater. Sci.: Mater. Med. 11, 782–792 (2000)

    Article  Google Scholar 

  15. P. Ducheyne, S. Radin, L. King, The effect of calcium phosphate ceramic composition and structure on in vitro behavior: I. Dissolution. J. Biomed. Mater. Res. 27, 25–34 (1993)

    Article  CAS  Google Scholar 

  16. M.M. Monteiro, N.C.C. da Rocha, A.M. Rossi, G. de Almeida Soares, Dissolution properties of calcium phosphate granules with different compositions in simulated body fluid. J. Biomed. Mater. Res. 65A, 299–305 (2003)

    Article  CAS  Google Scholar 

  17. G. Dalculsi, R.Z. Legeros, E. Nery, K. Lynch, B. Kerebel, Transformation of biphase calcium phosphate ceramics in vico: ultrastructural and physicochemical characterization. J. Biomed. Mater. Res. 23, 883–894 (1989)

    Article  Google Scholar 

  18. J. Weng, Q. Liu, J.G.C. Wolke, X. Zhang, K. de Groot, Formation and characteristics of the apatite layer on plasma-sprayed hydroxyapatite coatings in simulated body fluids. Biomaterials 18, 1027–1035 (1997)

    Article  CAS  Google Scholar 

  19. K. Hyakuna, T. Yamamuro, Y. Kotoura, M. Oka, T. Nakamura, T. Kitsugi, T. Kokubo, H. Kushitanim, Surface reactions of calcium phosphate ceramics to various solutions. J. Biomed. Mater. Res. 24, 471–488 (1990)

    Article  CAS  Google Scholar 

  20. H. Yang, S. Yang, X.P. Chi, J.R.G. Evans, Fine ceramic lattices prepared by extrusion freeforming. J. Biomed. Mater. Res. Part B: Appl. Biomater. 79B, 116–121 (2006)

    Article  CAS  Google Scholar 

  21. H. Yang, S. Yang, X.P. Chi, J.R.G. Evans, I. Thompson, R.J. Cook, P. Robinson, Sintering behaviour of calcium phosphate filament for use as hard tissue scaffold. J. Eur. Ceram. Soc. 28, 159–167 (2008)

    Article  CAS  Google Scholar 

  22. W. Suchanek, M. Yoshimura, Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement inmplants. J. Mater. Res. 13, 94–117 (1998)

    Article  CAS  Google Scholar 

  23. H. Monma, S. Ueno, T. Kanazawa, Properties of hydroxyapatite prepared by the hydrolysis of tricalcium phosphate. J. Chem. Technol. Biotechnol. 31, 15–24 (1981)

    CAS  Google Scholar 

  24. A. Mortier, J. Lemaitre, P.G. Rouxhet, Temperature-programmed characterization of synthetic calcium-deficient phosphate apatites. Thermochim. Acta. 143, 265–282 (1989)

    Article  CAS  Google Scholar 

  25. S. Raynaud, E. Champion, J.P. Lafon, D. Bernache-Assollant, Calcium phosphate apatites with variable Ca/P atomic ratio III Mechanical properties and degradation in solution of hot pressed ceramics. Biomaterials 23, 1081–1089 (2002)

    Article  CAS  Google Scholar 

  26. H. Wang, J.K. Lee, A. Moursi, J.J. Lannutti, Ca/P ratio effects on the degradation of hydroxyapatite in vitro. J. Biomed. Mater. Res. 67A, 599–608 (2003)

    Article  CAS  Google Scholar 

  27. W.D. Hollander, P. Patka, C.P.A.T. Klein, G.A.K. Heidendal, Macroporous calcium phosphate ceramics for bone substitution: a tracer study on bidegradation with 45Ca tracer. Biomaterials 12, 569–573 (1991)

    Article  Google Scholar 

  28. A.E. Porter, N. Patel, J.N. Skepper, S.M. Best, W. Bonfield, Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics. Biomaterials 24, 4609–4620 (2003)

    Article  CAS  Google Scholar 

  29. F. Lin, C.J. Liao, K.S. Chen, J.S. Sun, C.P. Lin, Petal-like apatite formed on the surface of tricalcium phosphate ceramic after soaking in distilled water. Biomaterials 22, 2981–2992 (2001)

    Article  CAS  Google Scholar 

  30. S.R. Radin, P. Ducheyne, The effect of calcium phosphate ceramic composition and structure on in vitro behavior II. Precipitation. J. Biomed. Mater. Res. 27, 35–45 (1990)

    Article  Google Scholar 

  31. N. Kanzaki, K. Onuma, A. Ito, K. Teraoka, T. Tateishi, S. Tsutsumi, Direct growth rate measurement of hydroxyapatite single crystal by moire phase shift interferometry. J. Phys. Chem. B 102, 6471–6476 (1998)

    Article  CAS  Google Scholar 

  32. T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone activity? Biomaterials 27, 2907–2915 (2006)

    Article  CAS  Google Scholar 

  33. H. McDowell, T.M. Gregory, W.E. Brown, Solubility of Ca5(PO4)3OH in the system Ca(OH)2–H3PO4–H2O at 5, 15, 25 and 37°C. J. Res. Natl. Bur. Stds. 81A, 273–281 (1977)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Engineering and Physical Sciences Research Council (EPSRC) for supporting this work under Grant Nos. GR/S57068 and EP/E0461193.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. G. Evans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H.Y., Thompson, I., Yang, S.F. et al. Dissolution characteristics of extrusion freeformed hydroxyapatite–tricalcium phosphate scaffolds. J Mater Sci: Mater Med 19, 3345–3353 (2008). https://doi.org/10.1007/s10856-008-3473-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3473-7

Keywords

Navigation