Skip to main content
Log in

Biofunctionalized poly(ethylene glycol)-block-poly(ε-caprolactone) nanofibers for tissue engineering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Electrospun fibers with contrasting cell adhesion properties provided non-woven substrates with enhanced in vitro acceptance and controllable cell interactions. Poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL) block copolymers with varying segment lengths were synthesized in two steps and characterized by NMR and GPC. A cell adhesive peptide sequence, GRGDS, was covalently coupled to the PEG segment of the copolymer in an additional step. The suitability of polymers with molecular weights ranging from 10 to 30 kDa for electrospinning and the influences of molecular weight, solvent, and concentration on the resulting morphologies were investigated. Generally, electrospun fibers were obtained by electrospinning polymers with molecular weight larger than 25 kDa and concentrations of 10 wt%. Methanol/chloroform (25/75, v/v) mixtures proved to be good solvent systems for electrospinning the PEG-b-PCL and resulted in hydrophilic, non-woven fiber meshes (contact angle 30°). The mesh without cell adhesive GRGDS ligands showed no attachment of human dermal fibroblasts after 24 h cell culture demonstrating that the particular combination of the material and electrospinnig conditions yielded protein and cell repellent properties. The GRGDS immobilized mesh showed excellent cellular attachment with fibroblasts viable after 24 h with spread morphology. Electrospun nanofibers based on block copolymers have been produced which are capable of specifically targeting cell receptor binding and are a promising material for tissue engineering and controlling cell material interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. RAMAKRISHNA, K. FUJIHARA, W.-E. TEO, T.-C. LIM and Z. MA, in “An Introduction to Electrospinning and Nanofibers” (World Scientific Publishing Co. Pvt. Ltd., Singapore, 2005) p. 291

    Google Scholar 

  2. M. NAVARRO, C. APARICIO, M. CHARLES-HARRIS, M. P. GINEBRA, E. ENGEL and J. A. PLANELL, Adv. Polym. Sci. 200 (2006) 209

    Article  CAS  Google Scholar 

  3. U. HERSEL, C. DAHMEN and H. KESSLER, Biomaterials 24 (2003) 4385

    Article  CAS  Google Scholar 

  4. D. H. RENEKER, A. L. YARIN, H. FONG and S. KOOMBHONGSE, J. Appl. Phys. 87 (2000) 4531

    Article  CAS  Google Scholar 

  5. Y. M. SHIN, M. M. HOHMAN, M. P. BRENNER and G. C. RUTLEDGE, Appl. Phys. Lett. 78 (2001) 1149

    Article  CAS  Google Scholar 

  6. M. M. HOHMAN, M. SHIN, G. C. RUTLEDGE and M. P. BRENNER, Phys. Fluids 13(8) (2001) 2201

    Article  CAS  Google Scholar 

  7. M. M. HOHMAN, M. SHIN, G. C. RUTLEDGE and M. P. BRENNER, Phys. Fluids 13(8) (2001) 2221

    Article  CAS  Google Scholar 

  8. S. V. FRIDRIKH, J. H YU, M. P. BRENNER and G. C. RUTLEDGE, Phys. Rev. Lett. 90 (2003) 144

    Article  CAS  Google Scholar 

  9. J. J. FENG, Phys. Fluids 14 (2002) 3912

    Article  CAS  Google Scholar 

  10. J. J FENG, J. Non-Newtonian Fluid Mech. 116 (2003) 55

    Article  CAS  Google Scholar 

  11. A. L YARIN, S. KOOMBHONGSE and D. H. RENEKER, J. Appl. Phys. 90 (2001) 4836

    Article  CAS  Google Scholar 

  12. J. A. MATTHEWS, G. E. WNEK, D. G. SIMPSON and G. L. BOWLIN, Biomacromolecules 3 (2002) 232

    Article  CAS  Google Scholar 

  13. Y. Z. ZHANG, H. OUYANG, C. T. LIM, S. RAMAKRISHNA and Z.-M. HUANG, J. Biomed. Mater. Res. 72B (2005) 156.

    Article  CAS  Google Scholar 

  14. Q. P. PHAM, U. SHARMA and A. G. MIKOS, Tissue Eng. 12 (2006) 1197

    Article  CAS  Google Scholar 

  15. E. JULE, Y. NAGASAKI and K. KATAOKA, Langmuir 18 (2002) 10334

    Article  CAS  Google Scholar 

  16. B. LINNEMANN, R. ALI, T. GRIES, D. GRAFAHREND, D. KLEE, M. MOELLER and G. ROTH, Chem. Fibers Int. 55(6) (2005) 370

    CAS  Google Scholar 

  17. B. LINNEMANN, R. ALI, T. GRIES, D. GRAFAHREND, D. KLEE, M. MOELLER and G. ROTH, Tekstil 55(6) (2006) 299

    Google Scholar 

  18. P. GUPTA, C. ELKINS, T. E. LONG and G. WILKES, Polymer 46 (2005) 4799

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by DFG Graduiertenkolleg 1035 “Biointerface” and BMBF 13N8888. The authors wish to thank DECHEMA, Gesellschaft für Chemische Technik und Biotechnologie e. V., for financial support of the research project “Nanofaservliese für die Therapie von Oberflächenwunden” (AiF-No. 14263) provided from funds of Bundesministerium für Wirtschaft und Technologie (BMWi) via a grant of Arbeitsgemeinschaft industrieller Forschungsvereinigungen “Otto von Guericke” e.V. (AiF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Moeller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grafahrend, D., Lleixa Calvet, J., Salber, J. et al. Biofunctionalized poly(ethylene glycol)-block-poly(ε-caprolactone) nanofibers for tissue engineering. J Mater Sci: Mater Med 19, 1479–1484 (2008). https://doi.org/10.1007/s10856-007-3299-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3299-8

Keywords

Navigation