Skip to main content

Advertisement

Log in

Osteogenic properties of calcium phosphate ceramics and fibrin glue based composites

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Calcium phosphate (Ca-P) ceramics are currently used in various types of orthopaedic and maxillofacial applications because of their osteoconductive properties. Fibrin glue is also used in surgery due to its haemostatic, chemotactic and mitogenic properties and also as scaffolds for cell culture and transplantation. In order to adapt to surgical sites, bioceramics are shaped in blocks or granules and preferably in porous forms. Combining these bioceramics with fibrin glue provides a mouldable and self-hardening composite biomaterial. The aim of this work is to study the osteogenic properties of this composite material using two different animal models. The formation of newly formed bone (osteoinduction) and bone healing capacity (osteconduction) have been study in the paravertebral muscles of sheep and in critical sized defects in the femoral condyle of rabbits, respectively. The different implantations sites were filled with composite material associating Ca-P granules and fibrin glue. Ca-P granules of 1–2 mm were composed with 60% of hydroxyapatite and 40% of beta tricalcium phosphate in weight. The fibrin glue was composed of fibrinogen, thrombin and other biological factors. After both intramuscular or intraosseous implantations for 24 weeks and 3, 6, 12 and 24 weeks, samples were analyzed using histology and histomorphometry and mechanical test. In all cases, the newly formed bone was observed in close contact and around the ceramic granules. Depending on method of quantification, 6.7% (with BSEM) or 17% (with μ CT) of bone had formed in the sheep muscles and around 40% in the critical sized bone rabbit defect after 24 weeks. The Ca-P/fibrin material could be used for filling bone cavities in various clinical indications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. LANGER and J. P. VACANTI, Science 260(5110) (1993) 920.

    Article  CAS  Google Scholar 

  2. H. BURCHARDT, Orthop. Clin. North. Am. 18(2) (1987) 187.

    CAS  Google Scholar 

  3. L. T. KURZ, S. R. GARFIN and R. E. BOOTH, Jr., Spine 14(12) (1989) 1324.

    Article  CAS  Google Scholar 

  4. F. D. BURSTEIN et al., Plast. Reconstr. Surg. 105(1) (2000) 34.

    Article  CAS  Google Scholar 

  5. C. DELLOYE, Chir. Organi. Mov. 88(4) (2003) 335.

    CAS  Google Scholar 

  6. E. J. BIEBER and M. B. WOOD, Clin. Plast. Surg. 13(4) (1986) 645.

    CAS  Google Scholar 

  7. P. FRAYSSINET et al., Biomaterials 14(6) (1993) 423.

    Article  CAS  Google Scholar 

  8. G. DACULSI et al., J. Mater. Sci. Mater. Med. 14(3) (2003) 195.

    Article  CAS  Google Scholar 

  9. U. RIPAMONTI, J. CROOKS and A. KIRBRIDE, South Africa J. Sci. 95 (1999) 335.

    CAS  Google Scholar 

  10. H. YUAN et al., J. Mater. Sci. Mater. Med. 13(12) (2002) 1271.

    Article  CAS  Google Scholar 

  11. P. HABIBOVIC et al., Biomaterials 26(17) (2005) 3565.

    Article  CAS  Google Scholar 

  12. F. BARRERE et al., J. Biomed. Mater. Res. 66A(4) (2003) 779.

    Article  CAS  Google Scholar 

  13. D. M. ALBALA, Cardiovasc. Surg. 11 (Suppl 1) (2003) 5.

    Article  Google Scholar 

  14. H. MATRAS, J. Oral. Maxillofac. Surg. 43(8) (1985) 605.

    Article  CAS  Google Scholar 

  15. R. R. PFISTER and C. I. SOMMERS, Cornea 24(5) (2005) 593.

    Article  Google Scholar 

  16. L. LE GUEHENNEC, P. LAYROLLE and G. DACULSI, Eur. Cell. Mater. 8 (2004) 1; discussion 1–11.

  17. N. SCHWARZ, Ann. Chir. Gynaecol. Suppl. 207 (1993) 63.

    CAS  Google Scholar 

  18. S. ABIRAMAN et al., Biomaterials 23(14) (2002) 3023.

    Article  CAS  Google Scholar 

  19. A. R. WITTKAMPF, J. Craniomaxillofac Surg. 17(4) (1989) 179.

    CAS  Google Scholar 

  20. G. DACULSI et al., Ann. Otol. Rhinol. Laryngol. 101(8) (1992) 669.

    CAS  Google Scholar 

  21. R. S. SPITZER et al., J. Biomed. Mater. Res. 59(4) (2002) 690.

    Article  CAS  Google Scholar 

  22. W. BENSAID et al., Biomaterials 24(14) (2003) 2497.

    Article  CAS  Google Scholar 

  23. L. LE GUEHENNEC et al., J. Mater. Sci. Mater. Med. 16(1) (2005) 29.

    Article  CAS  Google Scholar 

  24. D. LE NIHOUANNEN et al., Biomaterials 27(13) (2006) 2716.

    Article  CAS  Google Scholar 

  25. G. BLUTEAU et al., Biomaterials 27(15) (2006) 2934.

    Article  CAS  Google Scholar 

  26. H. M. FROST, Calcif. Tissue Res. 3(3) (1969) 211.

    Article  CAS  Google Scholar 

  27. L. LE GUEHENNEC et al., J. Biomed. Mater. Res. B. Appl. Biomater. 72(1) (2005) 69.

    Article  CAS  Google Scholar 

  28. M. RAMRAKHIANI, D. PAL and T. S. MURTY, Acta. Anat. (Basel) 103(3) (1979) 358.

    CAS  Google Scholar 

  29. D. LE NIHOUANNEN et al., Bone 36(6) (2005) 1086.

    Article  CAS  Google Scholar 

  30. F. JEGOUX et al., Arch. Orthop. Trauma. Surg. 125(3) (2005) 153.

    Article  Google Scholar 

  31. H. YAMASAKI and H. SAKAI, Biomaterials 13(5) (1992) 308.

    Article  CAS  Google Scholar 

  32. H. YUAN et al., J. Mater. Sci. Mater. Med. 9(12) (1998) 723.

    Article  CAS  Google Scholar 

  33. D. J. GEER, D. D. SWARTZ and S. T. ANDREADIS, Tissue Eng. 8(5) (2002) 787.

    Article  CAS  Google Scholar 

  34. G. HARASEN, Can. Vet. J. 43(4) (2002) 299.

    Google Scholar 

  35. O. M. PEARSON and D. E. LIEBERMAN, Am. J. Phys. Anthropol 39(Suppl) (2004) 63.

    Article  Google Scholar 

  36. H. YUAN et al., J. Mater. Sci.: Mat. Medi. 9(12) (1998) 717.

    Article  CAS  Google Scholar 

  37. J. LU et al., J. Mater. Sci. Mater. Med. 15(4) (2004) 361.

    Article  CAS  Google Scholar 

  38. Y. YAMADA et al., J. Craniomaxillofac. Surg. 31(1) (2003) 27.

    Google Scholar 

  39. T. R. SANTHOSH KUMAR and L. K. KRISHNAN, Biomaterials 22(20) (2001) 2769.

    Article  CAS  Google Scholar 

  40. J. M. KARP et al., J. Biomed. Mater. Res. A. 71(1) (2004) 162.

    Article  CAS  Google Scholar 

  41. P. HABIBOVIC et al., Biomaterials 26(1) (2005) 23.

    Article  CAS  Google Scholar 

  42. G. LI et al., J. Orthop. Res. 23(1) (2005) 196.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Le Nihouannen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nihouannen, D.L., Saffarzadeh, A., Aguado, E. et al. Osteogenic properties of calcium phosphate ceramics and fibrin glue based composites. J Mater Sci: Mater Med 18, 225–235 (2007). https://doi.org/10.1007/s10856-006-0684-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-006-0684-7

Keywords

Navigation