Skip to main content
Log in

Titanium dioxide (TiO2) nanoparticles filled poly(d,l lactid acid) (PDLLA) matrix composites for bone tissue engineering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Titanium dioxide (TiO2) nanoparticles were investigated for bone tissue engineering applications with regard to bioactivity and particle cytotoxicity. Composite films on the basis of poly(d,l lactid acid) (PDLLA) filled with 0, 5 and 30 wt% TiO2 nanoparticles were processed by solvent casting. Bioactivity, characterised by formation of hydroxyapatite (HA) on the materials surface, was investigated for both the free TiO2 nanoparticles and PDLLA/TiO2 composite films upon immersion in supersaturated simulated body fluid (1.5 SBF) for up to 3 weeks. Non-stoichiometric HA nanocrystals (ns-HA) with an average diameter of 40 nm were formed on the high content (30 wt% TiO2) composite films after 2 weeks of immersion in 1.5 SBF. For the pure PDLLA film and the low content composite films (5 wt% TiO2) trace amounts of ns-HA nanocrystals were apparent after 3 weeks. The TiO2 nanopowder alone showed no bioactivity. The effect of TiO2 nanoparticles (0.5–10,000 μg/mL) on MG-63 osteoblast-like cell metabolic activity was assessed by the MTT assay. TiO2 particle concentrations of up to 100 μg/mL had no significant effect on MG-63 cell viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C. E. HOLY, M. S. SHOICHET and J. E. DAVIES, J. Biomed. Mater. Res. 51 (2000) 376

    Article  CAS  Google Scholar 

  2. J. M. TABOAS, R. D. MADDOX, P. H. KREBSBACH and S. J. HOLLISTER, Biomaterials 24/1 (2003) 181

    Article  CAS  Google Scholar 

  3. I. D. THOMPSON and L. L. HENCH, Proc. Inst. Mech. Eng. [H] 212/2 (1998) 127

    CAS  Google Scholar 

  4. S. RAMAKRISHNA, J. MAYER, E. WINTERMANTEL and K. W. LEONG, Comp. Sci. Technol. 61/9 (2001) 1189

    Article  CAS  Google Scholar 

  5. A. R. BOCCACCINI and V. MAQUET, Comp. Sci. Technol. 63/16 (2003) 2417

    Article  CAS  Google Scholar 

  6. C. LOTY, J. M. SAUTIER, H. BOULEKBACHE, T. KOKUBO, H. M. KIM and N. FORST, J. Biomed. Mater. Res. 49 (2000) 423

    Article  CAS  Google Scholar 

  7. L. L. HENCH and J. K. WEST, Life Chem. Rep. 13 (1996) 187

    CAS  Google Scholar 

  8. J. R. JONES and L. L. HENCH, Mat. Sci. Technol. 17/8 (2001) 891

    CAS  Google Scholar 

  9. T. W. BAUER, Clin. Orthop. 405 (2002) 138

    Article  Google Scholar 

  10. T. W. BAUER and J. SCHILS, Skeletal Radiol. 28/9 (1999) 483

    Article  CAS  Google Scholar 

  11. P. A. REVELL, N. AL-SAFFAR and A. KOBAYASHI, Proc. Inst. Mech. Eng. [H] 211 (1997) 187

    CAS  Google Scholar 

  12. R. W. SIEGEL, Sci. Am. 275 (1996) 42

    Article  Google Scholar 

  13. T. J. WEBSTER, Am. Ceram. Soc. Bull. 82/6 (2003) 23

    CAS  Google Scholar 

  14. T. J. WEBSTER, R. W. SIEGEL and R. BIZIOS, Biomaterials 20/13 (1999) 1221

    Article  CAS  Google Scholar 

  15. J. K. SAVAIANO and T. J. WEBSTER, Biomaterials 25/7–8 (2004) 1205

    Article  CAS  Google Scholar 

  16. S. KAY, A. THAPA, K. M. HABERSTROH and T. J. WEBSTER, Tissue Eng. 8/5 (2002) 753

    Article  CAS  Google Scholar 

  17. A. YAMAMOTO, R. HONMA, M. SUMITA and T. HANAWA, J. Biomed. Mater. Res. 68A/2 (2004) 244

    Article  CAS  Google Scholar 

  18. T. J. WEBSTER, C. ERGUN, R. H. DOREMUS, R. W. SIEGEL and R. BIZIOS, Biomaterials 21/17 (2000) 1803

    Article  CAS  Google Scholar 

  19. T. J. WEBSTER, C. ERGUN, R. H. DOREMUS, R. W. SIEGEL and R. BIZIOS, J. Biomed. Mater. Res. 51(3) (2000) 475

    Article  CAS  Google Scholar 

  20. L. G. GUTWEIN and T. J. WEBSTER, Biomaterials 25/18 (2004) 4175

    Article  CAS  Google Scholar 

  21. P. ZHU, Y. MASUDA and K. KOUMOTO, Biomaterials 25/17 (2004) 3915

    Article  CAS  Google Scholar 

  22. R. ZHANG and P. X. MA, J. Biomed. Mater. Res. 45/4 (1999) 285

    Article  CAS  Google Scholar 

  23. X. YUAN, A. F. MAK and J. LI, J. Biomed. Mater. Res. 57/1 (2001) 140

    Article  CAS  Google Scholar 

  24. H. K. VARMA, Y. YOKOGAWA, F. F. ESPINOSA, Y. KAWAMOTO, K. NISHIZAWA, F. NAGATA and T. KAMEYAMA, Biomaterials 20/9 (1999) 879

    Article  CAS  Google Scholar 

  25. A. R. BOCCACCINI, L.-C. GERHARDT, S. REBELIN and J. J. BLAKER, Composites Part A 36/6 (2005) 721

    Article  CAS  Google Scholar 

  26. M. ETTLINGER, Fine Particles, in Technical Bulletin Pigments, No. 80. Degussa AG, Inorganic Chemical Products Division: Düsseldorf, pp. 1–26

  27. T. KOKUBO, H. KUSHITANI, S. SAKKA, T. KITSUGI and T. YAMAMURO, J. Biomed. Mater. Res. 24/6 (1990) 721

    Article  CAS  Google Scholar 

  28. T. MOSMANN, J. Immunol. Methods 65/1–2 (1983) 55

    Article  CAS  Google Scholar 

  29. F. L. MATTHEWS and R. D. RAWLINGS, Composite materials: Engineering and science, ed. Woodhead Publishing Ltd, Cambridge, UK (1999), pp. 342–354

  30. G. PENEL, G. LEROY, C. REY and E. BRES, Calcif. Tissue Int. 63/6 (1998) 475

    Article  CAS  Google Scholar 

  31. G. PENEL, G. LEROY, C. REY, B. SOMBRET, J. P. HUVENNE and E. BRES, J. Mater. Sci. Mater. Med. 8/5 (1997) 271

    Article  CAS  Google Scholar 

  32. G. KISTER, G. CASSANAS and M. VERT, Polymer 39/15 (1998) 3335

    Article  CAS  Google Scholar 

  33. P. TADDEI, A. TINTI and G. FINI, J. Raman Spectr. 32/8 (2001) 619

    Article  CAS  Google Scholar 

  34. ICDD, Powder Diffraction File, Inorganic Volume: Sets 9, 21, International Centre for Diffraction Data, I. Editor, ed., Swarthmore, Pennsylvania, USA 1967 (set 9), 1980 (set 21), pp. 9–432, 21–1271, 21–1276

  35. A. RAMILA and M. VALLET-REGI, Biomaterials 22/16 (2001) 2301

    Article  CAS  Google Scholar 

  36. W. L. MURPHY, D. H. KOHN and D. J. MOONEY, J. Biomed. Mater. Res. 50/1 (2000) 50

    Article  CAS  Google Scholar 

  37. H. P. BOEHM, Discuss. Faraday Soc. 52 (1971) 264

    Article  Google Scholar 

  38. H. MAEDA, T. KASUGA and M. NOGAMI, J. Eur. Ceram. Soc. 24/7 (2004) 2125

    Article  CAS  Google Scholar 

  39. T. PELTOLA, M. JOKINEN, H. RAHIALA, E. LEVANEN, J. B. ROSENHOLM, I. KANGASNIEMI and A. YLI-URPO, J. Biomed. Mater. Res. 44/1 (1999) 12

    Article  CAS  Google Scholar 

  40. M. UCHIDA, H. M. KIM, T. KOKUBO, S. FUJIBAYASHI and T. NAKAMURA, J. Biomed. Mater. Res. 64A/1 (2003) 164

    Article  CAS  Google Scholar 

  41. X. ZHENG, M. HUANG and C. DING, Biomaterials 21/8 (2000) 841

    Article  CAS  Google Scholar 

  42. J. D. PASTERIS, B. WOPENKA, J. J. FREEMAN, K. ROGERS, E. VALSAMI-JONES, J. A. M. VAN DER HOUWEN and M. J. SILVA, Biomaterials 25/2 (2004) 229

    Article  CAS  Google Scholar 

  43. W. HEIDEMANN, S. JESCHKEIT, K. RUFFIEUX, J. H. FISCHER, M. WAGNER, G. KRUGER, E. WINTERMANTEL and K. L. GERLACH, Biomaterials 22/17 (2001) 2371

    Article  CAS  Google Scholar 

  44. J. E. BERGSMA, W.C. DE BRUIJN, F. R. ROZEMA, R. R. BOS and G. BOERING, Biomaterials 16/1 (1995) 25

    Article  CAS  Google Scholar 

  45. C. DURUCAN and P. W. BROWN, Adv. Eng. Mater. 3 (2001) 227

    Article  CAS  Google Scholar 

  46. A. M. GATTI and F. RIVASI, Biomaterials 23/11 (2002) 2381

    Article  CAS  Google Scholar 

  47. K. PETERS, R. E. UNGER, C. J. KIRKPATRICK, A. M. GATTI and E. MONARI, J. Mater. Sci. Mater. Med. 15/4 (2004) 321

    Article  CAS  Google Scholar 

  48. K. DONALDSON, P. H. BESWICK and P. S. GILMOUR, Toxicol. Lett. 88/1–3 (1996) 293

    Article  CAS  Google Scholar 

  49. T. J. WEBSTER, C. ERGUN, R. H. DOREMUS, R. W. SIEGEL and R. BIZIOS, Biomaterials 22/11 (2001) 1327

    Article  CAS  Google Scholar 

  50. J. E. NEVELOS, E. INGHAM, C. DOYLE, J. FISHER and A. B. NEVELOS, Biomaterials 20/19 (1999) 1833

    Article  CAS  Google Scholar 

  51. D. GRANCHI, G. CIAPETTI, I. AMATO, S. PAGANI, E. CENNI, L. SAVARINO, S. AVNET, J. L. PERIS, A. PELLACANI, N. BALDINI and A. GIUNTI, Biomaterials 25/18 (2004) 4037

    Article  CAS  Google Scholar 

  52. M. A. GERMAIN, A. HATTON, S. WILLIAMS, J. B. MATTHEWS, M. H. STONE, J. FISHER and E. INGHAM, Biomaterials 24/3 (2003) 469

    Article  CAS  Google Scholar 

  53. C. H. LOHMANN, D. D. DEAN, G. KOSTER, D. CASASOLA, G. H. BUCHHORN, U. FINK, Z. SCHWARTZ and B. D. BOYAN, Biomaterials 23/8 (2002) :1855

    Article  CAS  Google Scholar 

  54. P. H. WOOLEY and E. M. SCHWARZ, Gene Ther. 11/4 (2004):402

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the experimental assistance and expertise of I. Notingher, M. Ardakani, M. Kershaw, R. Chater (all Department of Materials, Imperial College London, UK). The authors would also like to thank T. Kasuga (Department of Materials Science and Engineering, Nagoya Institute for Technology, Japan) for helpful discussions as well as Professor L.L. Hench (Department of Materials, Imperial College London, UK) for funding the cell biological experiments. Thanks are also due to the German Academic Exchange Service (DAAD) for funding provided for L.-C. Gerhardt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Boccaccini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerhardt, LC., Jell, G.M.R. & Boccaccini, A.R. Titanium dioxide (TiO2) nanoparticles filled poly(d,l lactid acid) (PDLLA) matrix composites for bone tissue engineering. J Mater Sci: Mater Med 18, 1287–1298 (2007). https://doi.org/10.1007/s10856-006-0062-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-006-0062-5

Keywords

Navigation