Skip to main content

Advertisement

Log in

Density functional calculations of the properties of silicon-substituted hydroxyapatite

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Ab initio density functional plane-wave calculations are performed on silicon-substituted hydroxyapatite (SiHA). Formation energies are obtained for the substitution of a phosphorus atom by a silicon atom in each of the six phosphate groups of the unit cell in turn. It is found that the co-removal of a hydroxyl group to maintain charge neutrality is energetically favourable and the calculated unit cell volumes for the single silicon substitutions agree extremely well with experimental observation. The substitution of a second silicon atom in the unit cell is found to be almost as energetically favourable as the first (and on one site more favourable) and there can be an attractive interaction between the two Si substituents when they are closely separated. However, experimental observation suggests that for this concentration of silicon a phase transformation to a different structure occurs which, because of the imposed boundary conditions, could not be accessed in the calculations. The density of states of the SiHA indicates that new states are introduced deep into the valence band and the band gap decreases by 1.6 eV compared to phase-pure HA. No new states are introduced into the band gap indicating that the Si incorporation does not make the material inherently electrically active. Furthermore a population analysis shows that the Si impurity has only a small effect on the neighbouring ionic charge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. N. H. DE LEEUW, Chem. Commun. 17 (2001) 1646

    Article  CAS  Google Scholar 

  2. S. M. REA, S. M. BEST and W. BONFIELD, J. Mater. Sci. Mater. Med. 15(9) (2004) 997

    Article  CAS  Google Scholar 

  3. A. PEETERS, E. A. P. DE MAEYER, C. VAN ALSENOY and R. M. H. VERBEECK, Phys. Chem. B 101 (1997) 3995

    Article  CAS  Google Scholar 

  4. T. KOBAYASHI, S. NAKAMURA and K. YAMASHITA, J. Biomed. Mater. Res. 57 (2001) 477

    Article  CAS  Google Scholar 

  5. N. H. DE LEEUW, Phys. Chem. Chem. Phys. 4 (2002) 3865

    Article  CAS  Google Scholar 

  6. N. H. DE LEEUW, J. Phys. Chem. B 108(6) (2004) 1809

    Article  CAS  Google Scholar 

  7. I. R. GIBSON, S. M. BEST and W. BONFIELD, J. Biomed. Mater. Res. 44 (1999) 422

    Article  CAS  Google Scholar 

  8. H. F. CHAPPELL, MPhil Dissertation, University of Cambridge (2003)

  9. S. WEN and Q. LIU, Microscopy Res. Tech. 40 (1998) 177

    Article  CAS  Google Scholar 

  10. A. E. PORTER, S. M. BEST and W. BONFIELD, Key Eng. Mat. 240–2 (2003) 505

    Google Scholar 

  11. A. E. PORTER, N. PATEL, J. N. SKEPPER, S. M. BEST and W. BONFIELD, Biomaterials 24 (2003) 4609

    Article  CAS  Google Scholar 

  12. I. R. GIBSON, S. M. BEST and W. BONFIELD, J. Am. Ceram. Soc. 85(11) (2002) 2771

    Article  CAS  Google Scholar 

  13. I. R. GIBSON, K. A. HING, P. A. REVELL, J. D. SANTOS, S. M. BEST and W. BONFIELD, Key Eng. Mater. 254–256 (2002) 203

    Article  Google Scholar 

  14. E. M. CARLISLE, Science 167 (1970) 179

    Article  Google Scholar 

  15. C. M. BOTELHO, M. A. LOPES, I. R. GIBSON, S. M. BEST and J. D. SANTOS, J. Mater. Sci. Mater. Med. 13 (2002) 1123

    Article  CAS  Google Scholar 

  16. N. PATEL, S. M. BEST and W. BONFIELD, J. Mater. Sci. Mater. Med. 13 (2002) 1199

    Article  CAS  Google Scholar 

  17. M. JIANG, J. TERRA, A. M. ROSSI, M. A. MORALES, E. M. BAGGIO SAITOVITCH and D. E. ELLIS, Phys. Rev. B 66 (2002) 224107

    Article  CAS  Google Scholar 

  18. M. C. PAYNE, M. P. TETER, D. C. ALLAN, T. A. ARIAS, J. D. JOANNOPOULOS, Rev. Mod. Phys. 64(4) (1992) 1045

    Article  CAS  Google Scholar 

  19. M. D. SEGALL, P. J. D. LINDAN, M. J. PROBERT, C. J. PICKARD, P. J. HASNIP, S. J. CLARK and M. C. PAYNE, J. Phys. Condens. Matter 14 (2002) 2717

    Article  CAS  Google Scholar 

  20. D. VANDERBILT, Phys. Rev. B 41 (1990) 7892

    Article  Google Scholar 

  21. H. J. MONKHORST and J. D. PACK, Phys. Rev. B 13(12) (1976) 5188

    Article  Google Scholar 

  22. J. PERDEW, K. BURKE and M. ERNZERHOF, Phys. Rev. Lett. 77(18) (1996) 3865

  23. W. H. PRESS et al. Numerical recipes (Cambridge University Press, 1989)

  24. Materials Studio 3.1, Accelrys

  25. S. M. BEST, W. BONFIELD, I. R. GIBSON, L. J. JIA and S. J. D. DA SILVA, Silicon-substituted apatites and process for the preparation thereof (August 9, 1999), Patent Number: 6,312,468

  26. A. E. PORTER, PhD Thesis, University of Cambridge (2003)

  27. M. D. SEGALL, C. J. PICKARD, R. SHAH and M. C. PAYNE Mol. Phys. 89 (1996) 571

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Helen Chappell would like to thank the EPSRC and ApaTech Ltd for supporting this project. The calculations were performed using the CCHPCF (Cambridge) and HPCx (Daresbury) computing facilities. The authors would like to acknowledge useful discussions with Dr Alex Porter and technical advice from Dr Phil Hasnip.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. F. Chappell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chappell, H.F., Bristowe, P.D. Density functional calculations of the properties of silicon-substituted hydroxyapatite. J Mater Sci: Mater Med 18, 829–837 (2007). https://doi.org/10.1007/s10856-006-0001-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-006-0001-5

Keywords

Navigation