Skip to main content
Log in

Comparative studies of pure BiFeO3 prepared by sol–gel versus conventional solid-state-reaction method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this article, we studied the effect of synthesis route on the multifunctional properties of multiferroic BiFeO3. BiFeO3 powders were prepared by conventional solid-state-reaction and sol–gel route. X-ray diffraction (XRD) patterns for these samples were collected at different stages of synthesis to analyze the phase purity of the formation. The XRD patterns reveal that sample prepared by sol–gel route attains the low temperature phase formation as compared to the solid state route. Rietveld refinement has been performed for these samples and lattice parameters, cell volume bond length etc. have been calculated from XRD patterns. Phonon modes were studied by Fourier transform infrared spectroscopy measurements and bond length calculated from XRD shows the good agreement with the bond length calculated from IR spectra. UV–visible spectra showed that BFO nanoparticles exhibit absorption peak at wavelength ~521 nm and band gap is more for the sample prepared by sol–gel route than solid state. The room temperature (RT) magnetic hysteresis (M–H) curve shows the large value magnetization in the sample prepared by sol–gel route in comparison to the sample prepared by solid state route. Similar behaviour is seen in the P–E hysteresis curve. Room temperature dielectric properties of these samples revealed that there is dispersion in the low frequency range that shows normal dielectric characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Fiebig, J. Phys. D 38, R123 (2005)

    Article  Google Scholar 

  2. G.A. Smolenskii, I. Chupis, Sov. Phys. Usp. 25, 475 (1982)

    Article  Google Scholar 

  3. T. Sun, Z.X. Pan, V.P. Dravid, Appl. Phys. Lett. 89, 163117 (2006)

    Article  Google Scholar 

  4. R. Mazumder, P.S. Devi, D. Bhattacharya, P. Choudhury, A. Sen, M. Raja, Appl. Phys. Lett. 91, 062510 (2007)

    Article  Google Scholar 

  5. F. Gao, Y. Yuan, K.F. Wang, X.Y. Chen, F. Chen, J.M. Liu, Z.F. Ren, Appl. Phys. Lett. 89, 102506 (2006)

    Article  Google Scholar 

  6. K. Takahashi, N. Kida, M. Tonouchi, Phys. Rev. Lett. 96, 117402 (2006)

    Article  Google Scholar 

  7. I. Sosnowska, A.K. Zvezdin, J. Magn. Magn. Mater. 140, 167 (1995)

    Article  Google Scholar 

  8. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Nature 426, 55 (2003)

    Article  Google Scholar 

  9. J.R. Cheng, J. Appl. Phys. 94, 5153 (2003)

    Article  Google Scholar 

  10. G.D. Achenbach, W.J. James, R. Gerson, J. Am. Ceram. Soc. 50, 437 (1967)

    Article  Google Scholar 

  11. N. Das, R. Majumdar, A. Sen, H.S. Maiti, Mater. Lett. 61, 2100 (2007)

    Article  Google Scholar 

  12. F. Gao, X.Y. Chen, K.B. Yin, S. Dong, Z.F. Ren, F. Yuan, T. Yu, Z.G. Zou, J.-M. Liu, Adv. Mater. 19, 2889 (2007)

    Article  Google Scholar 

  13. S. Ghosh, S. Dasgupta, A. Sen, H.S. Maiti, Mater. Res. Bull. 40, 2073 (2005)

    Article  Google Scholar 

  14. V. Fruth, L. Mitoseriu, D. Berger, A. Ianculescu, C. Matei, S. Preda, M. Zaharescu, Prog. Solid State Chem. 35, 193 (2007)

    Article  Google Scholar 

  15. S. Ghosh, S. Dasgupta, A. Sen, H.S. Maiti, J. Am. Ceram. Soc. 88, 1349 (2005)

    Article  Google Scholar 

  16. S. Shetty, V.R. Palkar, R. Pinto, Pramana J. Phys. 58, 1027 (2002)

    Article  Google Scholar 

  17. C. Chen, J. Cheng, S. Yu, L. Che, Z. Meng, J. Cryst. Growth 291, 135 (2006)

    Article  Google Scholar 

  18. Y. Wang, G. Xu, Z. Ren, X. Wei, W. Weng, P. Du, G. Shen, G. Han, J. Am. Ceram. Soc. 90, 2615 (2007)

    Article  Google Scholar 

  19. Y. Wang, G. Xu, Z. Ren, X. Wei, W. Weng, P. Du, G. Shen, G. Han, Ceram. Int. 34, 1569 (2008)

    Article  Google Scholar 

  20. L. Xiaomeng, X. Jimin, S. Yuanzhi, L. Jiamin, J. Mater. Sci. 42, 6824 (2007)

    Article  Google Scholar 

  21. S. Sharma, V. Singh, O. Parkash, R.K. Dwivedi, Appl. Phys. A 112, 975 (2013)

    Article  Google Scholar 

  22. M. Szafraniak, B. Połomska, A. Hilczer, L. Pietraszko, K. Epinski, J. Eur. Ceram. Soc. 27, 4399 (2007)

    Article  Google Scholar 

  23. G.L. Yuan, S.W. Or, Appl. Phys. Lett. 88, 062905 (2006)

    Article  Google Scholar 

  24. R.A. Young, A. Sakthivel, T.S. Moss, C.O. Paiva Santos, J. Appl. Cryst. 28, 366 (1995)

    Google Scholar 

  25. Y.J. Wu, X.K. Chen, J. Zhang, X.J. Chen, Phys. B 411, 106 (2013)

    Article  Google Scholar 

  26. H. Yang, T. Xian, Z.Q. Wei, J.F. Dai, J.L. Jiang, W.J. Feng, J. Sol-Gel. Sci. Technol. 58, 238 (2011)

    Article  Google Scholar 

  27. R. Palai, R.S. Katiyar, H. Schmid, P. Tissot, S.J. Clark, J. Robertson, S.A.T. Redfern, G. Catalan, J.F. Scott, Phys. Rev. B. 77, 014110 (2008)

    Article  Google Scholar 

  28. G. Srinet, R. Kumar, V. Sajal, J. Appl. Phys. 114, 033912 (2013)

    Article  Google Scholar 

  29. G.V.S. Rao, C.N.R. Rao, J.R. Ferraro, Appl. Spectrosc. 24, 436 (1970)

    Article  Google Scholar 

  30. K.K. Som, S. Molla, K. Bose, B.K. Chaudhuri, Phys. Rev. B 45, 1655 (1992)

    Article  Google Scholar 

  31. H.M. Tutuncu, G.P. Srivastava, Phys. Rev. B 78, 235209 (2008)

    Article  Google Scholar 

  32. B. Bhushan, Z. Wang, J.V. Tol, N.S. Dalal, A. Basumallick, N.Y. Vasanthacharya, S. Kumar, D. Das, J. Am. Ceram. Soc. 95, 1985 (2012)

    Article  Google Scholar 

  33. V. Singh, S. Sharma, M. Kumar, R.K. Kotnal, R.K. Dwivedi, J. Magn. Magn. Mater. 349, 264–267 (2014)

    Article  Google Scholar 

  34. S.C. Roy, G.L. Sharma, M.C. Bhatnagar, J. Solid State Commun. 141, 243–247 (2007)

    Article  Google Scholar 

  35. S.T. Zhang, M.H. Lu, D. Wu, Y.F. Chen, N.B. Ming, Appl. Phys. Lett. 87, 262907 (2005)

    Article  Google Scholar 

  36. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wutting, Science 299, 1719 (2003)

    Article  Google Scholar 

  37. D. Lebeugle, D. Colson, A. Forget, M. Viret, Appl. Phys. Lett. 91, 022907 (2007)

    Article  Google Scholar 

  38. A.K. Pradhan, K. Zhang, D. Hunter, J.B. Dadson, G.B. Loiutts, P. Bhattacharya, R. Katiyar, J. Zhang, D.J. Sellmyer, U.N. Roy, Y. Cui, A. Burger, J. Appl. Phys. 97, 093903 (2005)

    Article  Google Scholar 

  39. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  Google Scholar 

  40. Y. Li, Y. Jun, J. Li, C. Zheng, Y. Wu, Y. Zhao, M. Wang, Y. Wang, J. Mater. Sci.: Mater. Electron. 22, 323–327 (2011)

    Google Scholar 

Download references

Acknowledgments

One of the authors, R. K. Dwivedi is grateful to the Department of Science and Technology (DST), Government of India for financial support (Ref. No. SR/S3/ME/0048/2009-SERC). Subhash Sharma is also thankful to Jaypee Institute of Information Technology for providing him Research Assistance ship during course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar Dwivedi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, S., Singh, V., Kotnala, R.K. et al. Comparative studies of pure BiFeO3 prepared by sol–gel versus conventional solid-state-reaction method. J Mater Sci: Mater Electron 25, 1915–1921 (2014). https://doi.org/10.1007/s10854-014-1820-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-1820-7

Keywords

Navigation