Skip to main content
Log in

Ceria reinforced nanocomposite solder foils fabricated by accumulative roll bonding process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

As one of the key technologies for high performance electronic devices, composite solders have been recently developed to improve thermal and mechanical properties of solder joints. In this study, accumulative roll bonding process was used as an effective alternative method for manufacturing high-strength, finely dispersed, void-free and highly uniform Sn–Ag–Cu/CeO2 nanocomposite solders. Microstructural investigation of nanocomposite solders revealed that homogenous distribution of CeO2 nanoparticle has been achieved and the eutectic as-cast morphology of the solder changed to recrystallized fine grained structure. As a result of severe plastic deformation during rolling, brittle and elongated intermetallics crushed into fine particles with an average diameter of a few hundred nanometers and dispersed uniformly in the solder matrix. Mechanical test results showed that the microhardness, 0.2% yield stress, and ultimate tensile strength of the composite solder increased with addition of CeO2 nanoparticles, while the ductility of the composite was decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Y.C. Chan, D. Yan, Prog. Mater. Sci. 55, 428–475 (2010)

    Article  CAS  Google Scholar 

  2. J. Shen, Y.C. Chan, Microelectron. Reliab. 49, 223–234 (2009)

    Article  CAS  Google Scholar 

  3. F. Guo, J. Mater. Sci.: Mater. Electron. 18, 129–145 (2007)

    Article  CAS  Google Scholar 

  4. J. Shen, Y.C. Liu, Y.J. Han, Y.M. Tian, H.X. Gao, strengthening effects of zro2 nanoparticles on the microstructure and microhardness of Sn-3.5ag lead-free solder. J. Elec. Mater. 35, 1672–1679 (2006)

    Article  CAS  Google Scholar 

  5. L.C. Tsao, S.Y. Chang, Mater. Des. 31, 990–993 (2010)

    Article  CAS  Google Scholar 

  6. X. Wang, Y.C. Liu, C. Wei, H.X. Gao, P. Jiang, L.M. Yu, J. Alloys Compd. 480, 662–665 (2009)

    Article  CAS  Google Scholar 

  7. P. Babaghorbani, S.M.L. Nai, M. Gupta, J. Mater. Sci.: Mater. Electron. 20, 571–576 (2008)

    Article  Google Scholar 

  8. R. Jamaati, M. Toroghinejad, Mater. Sci. Eng. A 527, 7430–7435 (2010)

    Article  Google Scholar 

  9. M. Göken, H.W. Höppel, Adv. Mater. 23, 2663–2668 (2011)

    Article  Google Scholar 

  10. C.W. Schmidt, C. Knieke, V. Maier, H.W. Höppel, W. Peukert, M. Göken, Scripta Materialia 64, 245–248 (2011)

    Article  CAS  Google Scholar 

  11. M. Alizadeh, M.H. Paydar, J. Alloys Compd. 492, 231 (2010)

    Article  CAS  Google Scholar 

  12. S. Hwang, J. Lee, Z. Lee, J. Electron. Mater. 31, 1304–1308 (2002)

    Article  CAS  Google Scholar 

  13. L. Li, K. Nagai, F. Yin, Sci. Technol. Adv. Mater. 9, 1–11 (2008)

    Google Scholar 

  14. J. Bath, Lead-free soldering (Springer Science & Business Media, LLC, 2007), pp. 6–30

  15. L.R. Vaidyanath, M.G. Nicholas, D.R. Milner, British Weld J. 6, 13–28 (1959)

    Google Scholar 

  16. N. Tsuji, Y. Ito, Y. Saito, Y. Minamino, Scripta Mater. 47, 893–899 (2002)

    Article  CAS  Google Scholar 

  17. K.N. Subramanian, Lead-free electronic solders a special issue of the Journal of Materials Science: Materials in Electronic (Springer Science + Business Media, LLC, 2007)

  18. P. Lauro, S.K. Kang, W. Kyoung Choi, D. Shih, J. Electron. Mater. 32, 1432–1440 (2003)

    Article  CAS  Google Scholar 

  19. G. Krallics, J.G. Lenard, J. Mater. Process. Technol. 152, 154–161 (2004)

    Article  CAS  Google Scholar 

  20. Q. F. Wang, X. P. Xiao, J. Hu, W. W Xu, X.Q. Zhao, S. J. Zhao, in Proceedings of Sino-Swedish Structural Materials Symuosium, 2007

  21. P. Babaghorbania, S.M.L. Nai, M. Gupta, J. Alloys Compd. 478, 458–461 (2009)

    Article  Google Scholar 

  22. K. Sandar Tuna, M. Gupta, Compos. Sci. Technol. 67, 2657–2664 (2007)

    Article  Google Scholar 

  23. T.W. Clyne, P.J. Withers, An introduction to metal matrix composites (Cambridge University Press, Cambridge, 1993)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Roshanghias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roshanghias, A., Kokabi, A.H., Miyashita, Y. et al. Ceria reinforced nanocomposite solder foils fabricated by accumulative roll bonding process. J Mater Sci: Mater Electron 23, 1698–1704 (2012). https://doi.org/10.1007/s10854-012-0648-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0648-2

Keywords

Navigation