Skip to main content
Log in

Nanowires and nanostructures fabrication using template methods: a step forward to real devices combining electrochemical synthesis with lithographic techniques

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

One of the great challenges of today is to find reliable techniques for the fabrication of nanomaterials and nanostructures. Methods based on template synthesis and on self organization are the most promising due to their easiness and low cost. This paper focuses on the electrochemical synthesis of nanowires and nanostructures using nanoporous host materials such as supported anodic aluminum considering it as a key template for nanowires based devices. New ways are opened for applications by combining such template synthesis methods with nanolithographic techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F. Keller, M.S. Hunter, D.L. Robinson, J. Electrochem. Soc. 100, 411 (1953)

    Article  CAS  Google Scholar 

  2. J.P. O’Sullivan, G.C. Wood, Proc. Roy. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 317(1531) 511 (1970)

    Article  ADS  CAS  Google Scholar 

  3. G.E. Thompson, R.C. Furneaux, J.S. Goode, G.C. Wood, J.A. Richardson, Nature 272, 433 (1978)

    Article  ADS  CAS  Google Scholar 

  4. R.C. Furneaux, W.R. Rigby, A.P. Davidson, Nature 337, 147 (1989)

    Article  ADS  CAS  Google Scholar 

  5. H. Masuda, K. Fukuda, Science 268, 1466 (1995)

    Article  PubMed  ADS  CAS  Google Scholar 

  6. P.B. Price, R.M. Walker, J. Appl. Phys. 33, 3407 (1962)

    Article  ADS  CAS  Google Scholar 

  7. C.R. Martin, Science 266, 1961 (1994)

    Article  PubMed  ADS  CAS  Google Scholar 

  8. R. Parthasarathy, C.R. Martin, Nature 369, 298 (1994)

    Article  PubMed  ADS  CAS  Google Scholar 

  9. R.P. Fleischer, P.B. Price, R.M. Walker, E.L. Hubbard, Phys. Rev. 156, 353 (1967)

    Article  ADS  CAS  Google Scholar 

  10. W. Kautek, S. Reetz, S. Pentzien, Electrochim. Acta 40, 1461 (1995)

    Article  CAS  Google Scholar 

  11. E. Ferain, R. Legras, Nucl. Instrum. Methods Phys. Res. Sect. B. 174, 116 (2001)

    Article  ADS  CAS  Google Scholar 

  12. T. Thurn-Albrecht, J. Schotter, G.A. Kästle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C.T. Black, M.T. Tuominen, T.P. Russell, Science 290, 2126 (2000)

    Article  PubMed  ADS  CAS  Google Scholar 

  13. R.J. Tonucci, B.L. Justus, A.J. Campillo, C.E. Ford, Science 258, 783 (1992)

    Article  PubMed  ADS  CAS  Google Scholar 

  14. R.T. Rajendra Kumar, X. Badel, G. Víkor, J. Linnros, R. Schuch, Nanotechnology 16, 1697 (2005)

    Article  ADS  CAS  Google Scholar 

  15. J. Yahalom, O. Zadoc, J. Mater. Sci. 22, 499 (1987)

    Article  CAS  ADS  Google Scholar 

  16. D.S. Lashmore, M.P. Dariel, J. Electrochem. Soc. 135, 1218 (1988)

    Article  CAS  Google Scholar 

  17. S. Menezes, D. Anderson, in Electrochemical Society Extended Abstracts 342, Vol. 88-2, 174th Meeting of the Electrochemical Society, Chicago, Illinois, October 9–14, 1988, p. 503

  18. L.M. Goldman, C.A. Ross, W. Ohashi, D. Wu, F. Spaepen, Appl. Phys. Lett. 55, 2182 (1989)

    Article  ADS  CAS  Google Scholar 

  19. G. Barral, S. Maximovitch, Colloque de Physique. C4, 291 (1990)

    Google Scholar 

  20. J.P. Celis, A. Haseeb, J.R. Roos, Trans. Inst. Met. Finish. 70, 123 (1992)

    CAS  Google Scholar 

  21. A.S.M.A. Haseeb, J.P. Celis, J.R. Roos, J. Electrochem. Soc. 141, 230 (1994)

    Article  CAS  Google Scholar 

  22. S. Mátéfi-Tempfli, L. Piraux, Multiple bath electrodeposition EP1256639A1; method, apparatus and system for electrodeposition of a plurality of thin layers on a substrate WO02092883, US2006243597 (2002)

  23. H. Masuda, F. Hasegwa, S. Ono, J. Electrochem. Soc. 144, L127 (1997)

    Article  CAS  Google Scholar 

  24. K. Nielsch, J. Choi, K. Schwirn, R.B. Wehrspohn, U. Gösele, Nano Lett. 2, 677 (2002)

    Article  CAS  ADS  Google Scholar 

  25. H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, T. Tamamura, Appl. Phys. Lett. 71, 2770 (1997)

    Article  ADS  CAS  Google Scholar 

  26. M. Tian, S. Xu, J. Wang, N. Kumar, E. Wertz, Q. Li, P.M. Campbell, M.H.W. Chan, T.E. Mallouk, Nano Lett. 5, 697 (2005)

    Article  PubMed  CAS  ADS  Google Scholar 

  27. P.P. Mardilovich, A.N. Govyadinov, N.I. Mukhurov, A.M. Rzhevskii, R. Paterson, J. Membr. Sci. 98, 131 (1995)

    Article  CAS  Google Scholar 

  28. K. Nielsch, F. Müller, A.-P. Li, U. Gösele, Adv. Mater. 12, 582 (2000)

    Article  CAS  Google Scholar 

  29. S.Z. Chu, K. Wada, S. Inoue, S. Todoroki, J. Electrochem. Soc. 149, B321 (2002)

    Article  CAS  Google Scholar 

  30. S.Z. Chu, K. Wada, S. Inoue, S. Todoroki, Electrochim. Acta 48, 3147 (2003)

    Article  CAS  Google Scholar 

  31. O. Rabin, P.R. Hertz, Y.-M. Lin, A.I. Akinwande, S.B. Cronin, M.S. Dresselhaus, Adv. Funct. Mater. 13, 631 (2003)

    Article  CAS  Google Scholar 

  32. N. Yasui, A. Imada, T. Den, Appl. Phys. Lett. 83, 3347 (2003)

    Article  ADS  CAS  Google Scholar 

  33. G.J. Hale, Thin Solid Films 63, 95 (1979)

    Article  ADS  CAS  Google Scholar 

  34. L. Mattsson, Y.H. Le Page F. Ericson, Thin Solid Films 198, 149 (1991)

    Article  ADS  CAS  Google Scholar 

  35. J. Mallet, K. Yu-Zhang, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Piraux, J. Phys. D: Appl. Phys. 38, 909 (2005)

    Article  ADS  CAS  Google Scholar 

  36. W. Vinckx, J. Vanacken, V.V. Moshchalkov, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, S. Michotte, L. Piraux, Eur. Phys. J. B: Condens. Mater. Compl. Syst. 53, 199 (2006)

    Article  ADS  CAS  Google Scholar 

  37. W. Vinckx, J. Vanacken, V.V. Moshchalkov, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, S. Michotte, L. Piraux, X. Ye, Physica C: Supercond. 459, 5 (2007)

    Article  ADS  CAS  Google Scholar 

  38. S. Fusil, L. Piraux, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, S. Michotte, C.K. Saul, L.G. Pereira, K. Bouzehouane, V. Cros, C. Deranlot, J.-M. George, Nanotechnology 16, 2936 (2005)

    Article  ADS  CAS  Google Scholar 

  39. A. Vlad, M. Mátéfi-Tempfli, S. Faniel, V. Bayot, S. Melinte, L. Piraux, S. Mátéfi-Tempfli, Nanotechnology 17, 4873 (2006)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the FNRS, the NANOMOL project (Actions de recherches concertées—Communauté française de Belgique), and by the Interuniversity Attraction Pole Program (P6/42)—Belgian State—Belgian Science Policy. We gratefully acknowledge financial support for this study from the Government of the Walloon Region (NANOTIC project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mátéfi-Tempfli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mátéfi-Tempfli, S., Mátéfi-Tempfli, M., Vlad, A. et al. Nanowires and nanostructures fabrication using template methods: a step forward to real devices combining electrochemical synthesis with lithographic techniques. J Mater Sci: Mater Electron 20 (Suppl 1), 249–254 (2009). https://doi.org/10.1007/s10854-008-9568-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-008-9568-6

Keywords

Navigation