Skip to main content
Log in

Crystallographic tilt in GaN-on-Si (111) heterostructures grown by metal–organic chemical vapor deposition

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report on the studies of crystallographic tilt induced by miscut of the Si (111) substrate in GaN-on-Si (111) heterostructures grown by metal–organic chemical vapor deposition. By employing high-resolution X-ray diffraction, we found that the onset of crystallographic tilt occurred at the interface between the AlN nucleation layer and the Si (111) substrate. The orientation of the GaN overlayer always follows that of the AlN nucleation layer irrespective of its quality and miscut of the substrates. The resultant GaN [0002] is tilted toward GaN (11−20) and (10−10) atomic planes for the miscuts of Si (111) toward Si [1−10] and [11−2], respectively. In both cases, the misorientation of GaN (0002), i.e., the tilt of GaN [0002] from the surface normal direction, is in the same direction of the miscut of Si (111). The misorientation angle of the GaN epilayer is generally smaller than the miscut angle of the substrate. However, the crystallographic tilt, i.e., the angle formed between GaN [0002] and Si [111], is always much larger than the Nagai tilt. These observations are attributable to misfit dislocations that are anisotropically generated at the AlN/Si (111) interface. This mechanism is discussed based on recent microscopic observations of in-plane misfit dislocations at the interface near the atomic step edges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dadgar A, Schulze F, Wienecke M, Gadanecz A, Bläsing J, Veit P, Hempel T, Diez A, Christen J, Krost A (2007) Epitaxy of GaN on silicon—impact of symmetry and surface reconstruction. New J Phys 9:389

    Article  Google Scholar 

  2. Chung JW, Ryu K, Liu B, Palacios T (2010) IEEE solid-state device research conference (ESSDERC). In: Proceedings of the European, pp 52–56

  3. Zhu D, McAleese C, McLaughlin KK, Häberlen M, Salcianu CO, Thrush EJ, Kappers MJ, Phillips WA, Lane P, Wallis DJ, Martin T, Astles M, Thomas S, Pakes A, Heuken M, Humphreys CJ (2009) GaN-based LEDs grown on 6-inch diameter Si (111) substrates by MOVPE. Proc SPIE 7231:723118

    Article  Google Scholar 

  4. Drechsel P, Stauss P, Bergbauer W, Rode P, Fritze S, Krost A, Markurt T, Schulz T, Albrecht M, Riechert H, Steegmüller U (2012) Impact of buffer growth on crystalline quality of GaN grown on Si(111) substrates. Phys Status Solidi A 209:427

    Article  Google Scholar 

  5. Krost A, Dadgar A (2002) GaN-based optoelectronics on silicon substrates. Mater Sci Eng B 93:77

    Article  Google Scholar 

  6. Taniyasu Y, Kasu M, Makimoto T (2007) Threading dislocations in heteroepitaxial AlN layer grown by MOVPE on SiC (0 0 0 1) substrate. J Cryst Growth 298:310

    Article  Google Scholar 

  7. Dodson BW, Myers DR, Datye AK, Kaushik VS, Kendall DL, Martinez-Tovar B (1988) Asymmetric tilt boundaries and generalized heteroepitaxy. Phys Rev Lett 61:2681

    Article  Google Scholar 

  8. Matyi RJ, Lee JW, Schaake HF (1988) Substrate orientation and processing effects on GaAs/Si misorientation in GaAs-on-Si grown by MBE. J Electron Mater 17:87

    Article  Google Scholar 

  9. Contreras O, Ponce FA, Christen J, Dadgar A, Krost A (2002) Dislocation annihilation by silicon delta-doping in GaN epitaxy on Si. Appl Phys Lett 81:4712

    Article  Google Scholar 

  10. Suda J, Miyake H, Amari K, Nakano Y, Kimoto T (2009) Systematic investigation of c-axis tilt in GaN and AlGaN grown on vicinal SiC(0001) substrates. Jpn J Appl Phys 48:020202

    Article  Google Scholar 

  11. Huang XR, Bai J, Dudley M, Dupuis RD, Chowdhury U (2005) Epitaxial tilting of GaN grown on vicinal surfaces of sapphire. Appl Phys Lett 86:211916

    Article  Google Scholar 

  12. Nagai H (1974) Structure of vapor-deposited Ga x In1−x as crystals. J Appl Phys 45:3789

    Article  Google Scholar 

  13. Liu HF, Dolmanan SB, Zhang L, Chua SJ, Chi DZ, Heuken M, Tripathy S (2013) Influence of stress on structural properties of AlGaN/GaN high electron mobility transistor layers grown on 150 mm diameter Si (111) substrate. J Appl Phys 113:023510

    Article  Google Scholar 

  14. Pesek A, Hingerl K, Riesz F, Lischka K (1991) Lattice misfit and relative tilt of lattice planes in semiconductor heterostructures. Semicond Sci Technol 6:705

    Article  Google Scholar 

  15. Liu HF, Tan CC, Dalapati GK, Chi DZ (2012) Magnetron-sputter deposition of high-indium-content n-AlInN thin film on p-Si(001) substrate for photovoltaic applications. J Appl Phys 112:063114

    Article  Google Scholar 

  16. Liu HF, Dolmanan SB, Tripathy S, Dalapati GK, Tan CC, Chi DZ (2013) Effects of A1N thickness on structural and transport properties of In-rich n-AlInN/AlN/p-Si(0 0 1) heterojunctions grown by magnetron sputtering. J Phys D 46:095106

    Article  Google Scholar 

  17. Liu HF, Chua SJ, Hu GX, Gong H, Xiang N (2007) Effects of substrate on the structure and orientation of ZnO thin film grown by rf-magnetron sputtering. J Appl Phys 102:083529

    Article  Google Scholar 

  18. Zhang L, Teng JH, Chua SJ, Fitzgerald EA (2009) Linearly polarized light emission from InGaN light emitting diode with subwavelength metallic nanograting. Appl Phys Lett 95:261110

    Article  Google Scholar 

  19. Kim TH, Baek SH, Jang SY, Yang SM, Chang SH, Song TK, Yoon J-G, Eom CB, Chung J-S, Noh TW (2011) Step bunching-induced vertical lattice mismatch and crystallographic tilt in vicinal BiFeO3(001) films. Appl Phys Lett 98:022904

    Article  Google Scholar 

  20. Huang XR, Bai J, Dudley M, Wagner B, Davis RF, Zhu Y (2005) Step-controlled strain relaxation in the vicinal surface epitaxy of nitrides. Phys Rev Lett 95:086101

    Article  Google Scholar 

  21. Litvinov D, Gerthsen D, Vöhringer R, Hu DZ, Schaadt MD (2012) Transmission electron microscopy investigation of AlN growth on Si(111). J Cryst Growth 338:283

    Article  Google Scholar 

  22. Sakai A, sunakawa H, Usui A (1998) Transmission electron microscopy of defects in GaN films formed by epitaxial lateral overgrowth. Appl Phys Lett 73:481

    Article  Google Scholar 

  23. Barabash RI, Roder C, Ice GE, Einfeldt S, Budai JD, Barabash OM, Figge S, Hommel D (2006) Spatially resolved distribution of dislocations and crystallographic tilts in GaN layers grown on Si(111) substrates by maskless cantilever epitaxy. J Appl Phys 100:053103

    Article  Google Scholar 

  24. Degawa M, Minoda H, Tanishiro Y, Yagi K (1999) Temperature dependence of period of step wandering formed on Si(111) vicinal surfaces by DC heating. J Phys 11:L551

    Google Scholar 

  25. Ramana Mutry MV, Fini P, Stephenson GB, Thompson C, Eastman JA, Munkholm A, Auciello O, Jothilingam R, DenBaars SP, Speck JS (2000) Step bunching on the vicinal GaN(0001) surface. Phys Rev B 62:R10661

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank C. B. Soh, S. Tripathy, and K. Y. Zang for sharing the GaN-on-Si (111) heterostructure samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. F. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H.F., Zhang, L., Chua, S.J. et al. Crystallographic tilt in GaN-on-Si (111) heterostructures grown by metal–organic chemical vapor deposition. J Mater Sci 49, 3305–3313 (2014). https://doi.org/10.1007/s10853-014-8025-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8025-6

Keywords

Navigation