Skip to main content
Log in

Structure of grains and grain boundaries in cryo-mechanically processed Ti alloy

  • Nanostructured Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A Ti5Ta1.8Nb alloy with the major phase as α (hcp) Ti has been subjected to severe plastic deformation by means of cryo-rolling. Significant grain refinement (from ~5 μm to ~60 nm) has been observed. The mechanism of grain refinement was studied by analysis of lattice strain variations with increase in cold work using XRD technique. Various intermediate stages, such as hardening, alignment of dislocations, cell formation and criticality before new grain formation, were identified. Formation of cells with dislocations alignment at the boundaries and then finally forming an ultra-fine grain structure was confirmed by transmission electron microscopy studies. Detailed grain boundary characterisation has been carried out using high-resolution transmission electron microscopy studies and crystallographic texture analysis. The grain-refined structure was found to possess a large fraction of high angle boundaries identified also as special boundaries by evaluating the misorientation angle/axis sets for a pair of adjacent grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103

    Article  CAS  Google Scholar 

  2. Lowe TC, Valiev RZ (2000) J Miner Metals Mater Soc (JOM) 52:27–28

    Article  CAS  Google Scholar 

  3. Koch CC, Cho YS (1992) Nanostr Mater 1:207

    Article  CAS  Google Scholar 

  4. Gil Sevillano J, VanHoutte P, Aernoudt E (1980) In: Christian JW, Haasen P, Massalski TB (eds) Progress in materials science: large strain work hardening and textures (vol 25). Pergamon, New York, p 69

    Google Scholar 

  5. Alexandrov IV (1998) Mater Trans 29A:2253

    CAS  Google Scholar 

  6. Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Acta Mater 46:3317

    Article  CAS  Google Scholar 

  7. Salishchev GA, Valiakhmetov OR, Valitov VA, Muktarov SK (1994) Mater Sci Forum 170–172:121

    Article  Google Scholar 

  8. Nes E, Marthinsen K, Brechet Y (2002) Scrip Mater 47:607

    Article  CAS  Google Scholar 

  9. Nes E (1997) Prog Mater Sci 41:129–193

    Article  CAS  Google Scholar 

  10. Hirth JP, Lothe J (1968) Theory of dislocations. McGraw-Hill, New York

    Google Scholar 

  11. Watanabe Tadao (1993) Mater Sci Eng A166:11

    CAS  Google Scholar 

  12. Watanabe T (1994) Mater Sci Eng A176:39

    Google Scholar 

  13. Watanabe T (2011) J Mater Sci 46:4095. doi:10.1007/s10853-011-5393-z

    Article  CAS  Google Scholar 

  14. Boyer RR (1996) Mater Sci Eng A213:103

    CAS  Google Scholar 

  15. Dasgupta A, Karthikeyan T, Saroja S, Raju VR, Vijayalakshmi M, Dayal RK, Raghunathan VS (2007) J Mater Eng Perform 16:800–806

    Article  CAS  Google Scholar 

  16. Dasgupta A, Laha K, Kayalvizhi R, Jeyaganesh B, Raju S, Murugesan S, Saroja S, Sarma VS, Vijayalakshmi M (2009) Mater Res Soc Symp Proc 1137:EE05–EE29

    Google Scholar 

  17. Dasgupta A, Basu J, Parida PK, Vadavadagi BH, Saroja S, Vijayalakshmi M, Jayakumar T (2012) Forum 702–703:131

    Google Scholar 

  18. Karthikeyan T, Dasgupta A, Saroja S, Vijayalakshmi M (2005) J Mater Eng Perform 14:241–248

    Article  CAS  Google Scholar 

  19. Edgar F (2010) Z Kristallogr 225:103

    Article  Google Scholar 

  20. Lutterotti L, Scardi P (1990) J Appl Crystallogr 23:246

    Article  CAS  Google Scholar 

  21. Lutterotti L, Giolanella S (1997) Acta Mater 46:101

    Article  Google Scholar 

  22. Nemat-Nasser S, Guo WG, Cheng JY (1999) Acta Mater 47:3705

    Article  CAS  Google Scholar 

  23. Prinz F, Argon AS (2006) Phys Stat Sol A 57:741

    Article  Google Scholar 

  24. Cahoon JR, Broughton WH, Kutzak AR (1971) Metal Trans 2:1979

    CAS  Google Scholar 

  25. Gleiter H (1969) Acta Metal 17:565

    Article  CAS  Google Scholar 

  26. Kokawa H, Watanabe T, Karashima S (1981) Philos Mag A 44:1239

    Article  CAS  Google Scholar 

  27. Engler Olaf, Randle Valerie (2010) Introduction to texture analysis macrotexture, microtexture and orientation mapping, 2nd edn. CRC Press, New York. ISBN 978-1-4200-6365-3

    Google Scholar 

  28. Ryoo HS, Hwang SK, Kim MH, Kwun SI (2001) Scrip Mater 44:2583

    Article  CAS  Google Scholar 

  29. Randlea V, Rohrerb GS, Hua Y (2008) Scrip Mater 58:183

    Article  Google Scholar 

  30. Bonnet R, Cousineau E, Warrington DH (1981) Acta Cryst A37:184

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arup Dasgupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dasgupta, A., Murugesan, S., Saroja, S. et al. Structure of grains and grain boundaries in cryo-mechanically processed Ti alloy. J Mater Sci 48, 4592–4598 (2013). https://doi.org/10.1007/s10853-013-7190-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7190-3

Keywords

Navigation