Skip to main content
Log in

An approach to prepare defect-free PES/MFI-type zeolite mixed matrix membranes for CO2/N2 separation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polyethersulfone (PES) and MFI-type zeolite mixed matrix membranes (MMMs) were successfully fabricated by a novel particle suspension impregnating and solution-casting method. The effects of two different membrane preparation methods on the membrane morphology were investigated by scanning electron microscopy; the particle crystal type and distribution were explored by X-ray diffraction and fourier transform attenuated total reflectance infrared spectroscopy. The results showed that the MFI-zeolite particles were successfully synthesized, with particle diameter around 250 nm. Distribution and dispersion of MFI-zeolite particles suspended in the polymer matrix are homogeneous and uniform. The thermal analysis indicates that the glass transition temperature (T g) of MMMs is around 230 °C and the initial degradation temperature is up to 460 °C in air. The increment of T g compared to the neat PES confirms that the polymer chain rigidification is induced by zeolite particles. The MMMs have been evaluated by the CO2/N2 separation factor and permeability measured as a function of permeation temperature, the maximum separation factor of the PES/10 % MFI-silica zeolite for the pure gas reaches 35 at 25 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Baker RW (2002) Ind Eng Chem Res 41:1393–1411

    Article  CAS  Google Scholar 

  2. Yu L, Xu Z, Shen H, Yang H (2009) J Membr Sci 337:257–265

    Article  CAS  Google Scholar 

  3. Xu Z, Qusay FA (2004) J Membr Sci 233:101–111

    Article  CAS  Google Scholar 

  4. Li Y, Chung TS (2008) J Membr Sci 308:128–135

    Article  CAS  Google Scholar 

  5. Yeo ZY, Chew TL, Zhu PW, Mohamed AR, Chai SP (2012) J Nat Gas Chem 21:282–298

    Article  CAS  Google Scholar 

  6. Kulprathipanja S, Neuzil RW, Li N (1988) US Pat 4(740):219

    Google Scholar 

  7. Mahajan R, Koros WJ (2000) Ind Eng Chem Res 39:2692–2696

    Article  CAS  Google Scholar 

  8. Sublet J, Tirus MP, Guihaume N, Farrusseng D, Schrive L, Chanaud P, Siret B, Durecu S (2012) AIChE J 58:3183–3194

    Article  CAS  Google Scholar 

  9. Hudiono YC, Carlisle TK, Baraa JE, Zhang Y, Gina DL, Noblea RD (2010) J Membr Sci 350:117–123

    Article  CAS  Google Scholar 

  10. Shen Y, Lua AC (2012) Chem Eng J 192:201–210

    Article  CAS  Google Scholar 

  11. Dai Y, Johnson JR, Karvan O, Sholl DS, Koros WJ (2012) J Membr Sci 401–402:76–82

    Article  Google Scholar 

  12. Chung TS, Jiang LY, Li Y, Kulprathipanja S (2007) Prog Polym Sci 32:483–507

    Article  CAS  Google Scholar 

  13. Teshima K, Sugimura H, Inoue Y, Takai O (2003) Langmuir 19:8331–8334

    Article  CAS  Google Scholar 

  14. Li Y, Guan HM, Chung TS, Kulprathipanja S (2006) J Membr Sci 257:17–28

    Article  Google Scholar 

  15. Bae TH, Liu J, Lee JS, Koros WJ, Jones CW, Nair S (2009) J Am Chem Soc 131:14662–14663

    Article  CAS  Google Scholar 

  16. Shu SH, Koros WJ (2007) J Phys Chem C 111:652–657

    Article  CAS  Google Scholar 

  17. Bae TH, Liu J, Thompson JA, Koros WJ, Jones CW (2011) Microporous Mesoporous Mater 139:120–129

    Article  CAS  Google Scholar 

  18. Marcilla A, Beltran M, Siurana AG, Martínez I, Berenguer D (2010) Appl Catal A 378:107–113

    Article  CAS  Google Scholar 

  19. Xiao L, Li J, Jin H, Xu R (2006) Microporous Mesoporous Mater 96:413–418

    Article  CAS  Google Scholar 

  20. Li L, Dong J, Nenoff TM (2007) Sep Purif Technol 53:42–48

    Article  CAS  Google Scholar 

  21. Liu Q, Wang T, Guo H, Liang C, Liu S, Zhang Z, Cao Y, Su D, Qiu J (2009) Microporous Mesoporous Mater 120:460–466

    Article  CAS  Google Scholar 

  22. Saranya R, Arthanareeswaran G, Sakthivelu S, Manohar P (2012) Ind Eng Chem Res 51:4942–4951

    Article  CAS  Google Scholar 

  23. Guan R, Dai H, Li C, Liu JH, Xu J (2006) J Membr Sci 277:148–156

    Article  CAS  Google Scholar 

  24. Ramanathan T, Fisher FT, Ruoff RS, Brinson LC (2005) Chem Mater 17:1290–1295

    Article  CAS  Google Scholar 

  25. Ji P, Cao Y, Zhao H, Kang G, Jie X, Liu D, Liu J, Yuan Q (2009) J Membr Sci 342:190–197

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Appreciation is expressed to the State of New Mexico through the Petroleum Recovery Research Center of New Mexico Tech for their support. The authors would like to thank Ms. Liz Bustamante for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10853_2013_7178_MOESM1_ESM.doc

Fig. 1. TG curves of MMMs with the particle loading from 0 to 15 %. (DOC 40 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, J., Li, L., Liu, N. et al. An approach to prepare defect-free PES/MFI-type zeolite mixed matrix membranes for CO2/N2 separation. J Mater Sci 48, 3782–3788 (2013). https://doi.org/10.1007/s10853-013-7178-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7178-z

Keywords

Navigation