Skip to main content
Log in

An in situ experimental study of grain growth in a nanocrystalline Fe91Ni8Zr1 alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Grain growth and microstructural evolution of thermally stabilized Fe91Ni8Zr1 were investigated by in situ and ex situ studies. Our investigations suggest that the microstructural evolution is fairly slow and the microstructure shows stabilization up to about 700 °C. Above this temperature, a certain fraction of grains grow abnormally into the nanocrystalline matrix, resulting in a bimodal microstructure and causing the complete loss of thermal stability. The reason for abnormal grain growth and the loss of thermal stability is identified as the appearance of the fcc γ-phase and consequent reduction in the total area of grain boundaries and the overall stored energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

M :

Grain boundary mobility

Q :

Activation energy

ν :

Velocity of grain boundary

D :

Grain diameter

h :

Specimen thickness

δD:

Incremental growth

δG :

Change in volume free energy

δГ s :

Change in surface energy

δГ i/gb :

Change in the interphase energy-grain boundary energy

A s :

Free surface area

A i :

Grain interface area

V :

Volume of grains

g :

Bulk free energy per volume

Г s :

Surface energy per area

Г i :

α-to-γ interface energy per area

Г gb :

Grain boundary energy per area

P :

Pressure acting on the grain interfaces

\( \tilde{D} \) :

Diffusivity

D o :

Frequency factor

r :

Diffusion distance

t :

Annealing time

T :

Annealing temperature

R :

Gas constant

References

  1. Gleiter H (1989) Prog Mater Sci 33(4):223

    Article  CAS  Google Scholar 

  2. Birringer R (1989) Mater Sci Eng A 117:33

    Article  Google Scholar 

  3. Suryanarayana C (2002) Jom-J Min Metals Mater Soc 54(9):24

    Article  CAS  Google Scholar 

  4. Koch CC, Scattergood RO, Darling KA, Semones JE (2008) J Mater Sci 43(23–24):7264

    Article  CAS  Google Scholar 

  5. Koch CC (2007) J Mater Sci 42(5):1403

    Article  CAS  Google Scholar 

  6. Suryanarayana C (1995) Int Mater Rev 40(2):41

    Article  CAS  Google Scholar 

  7. Gleiter H (1992) Adv Mater 4(7–8):474

    Article  CAS  Google Scholar 

  8. VanLeeuwen BK, Darling KA, Koch CC, Scattergood RO, Butler BG (2010) Acta Mater 58(12):4292

    Article  CAS  Google Scholar 

  9. Krill CE, Ehrhardt H, Birringer R (2005) Zeitschrift Fur Metallkunde 96(10):1134

    CAS  Google Scholar 

  10. Shaw L, Luo H, Villegas J, Miracle D (2003) Acta Mater 51(9):2647

    Article  CAS  Google Scholar 

  11. Frolov T, Darling KA, Kecskes LJ, Mishin Y (2012) Acta Mater 60(5):2158

    Article  CAS  Google Scholar 

  12. Darling KA, VanLeeuwen BK, Koch CC, Scattergood RO (2010) Mater Sci Eng, A 527(15):3572

    Article  Google Scholar 

  13. Perez RJ, Jiang HG, Dogan CP, Lavernia EJ (1998) Metall Mater Transac A 29(10):2469

    Article  Google Scholar 

  14. Kirchheim R (2007) Acta Mater 55(15):5129

    Article  CAS  Google Scholar 

  15. Michels A, Krill CE, Ehrhardt H, Birringer R, Wu DT (1999) Acta Mater 47(7):2143

    Article  CAS  Google Scholar 

  16. www.protochips.com

  17. Smith CJE, Dillamore IL (1970) Metal Sci 4(1):161

    CAS  Google Scholar 

  18. Kotan H, Saber M, Koch CC, Scattergood RO (2012) Mater Sci Eng, A 552:310

    Article  CAS  Google Scholar 

  19. Darling KA, VanLeeuwen BK, Semones JE, Koch CC, Scattergood RO, Kecskes LJ, Mathaudhu SN (2011) Mater Sci Eng, A 528(13–14):4365

    Google Scholar 

  20. Shen TD, Schwarz RB, Feng S, Swadener JG, Huang JY, Tang M, Zhang H, Vogel SC, Zhao YS (2007) Acta Mater 55(15):5007

    Article  CAS  Google Scholar 

  21. Malow TR, Koch CC (1997) Acta Mater 45(5):2177

    Article  CAS  Google Scholar 

  22. Kotan H, Darling KA, Saber M, Koch CC, Scattergood RO (2012) J Alloys Comp. doi:10.1016/j.jallcom.2012.10.179

  23. Dake JM, Krill CE (2012) Scripta Mater 66(6):390

    Article  CAS  Google Scholar 

  24. Culity BD (1977) Element of X-ray diffraction, 2nd edn. Addison-Wesley, MA

    Google Scholar 

  25. Murr LE (1975) Interfacial phenomena in metals and alloys. Addision-Wesley, MA

    Google Scholar 

  26. Yang Z, Johnson RA (1993) Modell Simul Mater Sci Eng 1(5):707

    Article  CAS  Google Scholar 

  27. Kubaschewski O, Goldbeck OV (1949) Trans Faraday Soc 45:948

    Google Scholar 

  28. Raghavan V (1992) Indian Inst Metals 6B:1094

    Google Scholar 

  29. Syn CK, Jin S, Morris JW (1976) Metall Transac A 7:1827

    Google Scholar 

  30. Mun SH, Watanabe M, Li X, Oh KH, Williams DB, Lee HC (2002) Metall Mater Transac A 33:1057

    Article  Google Scholar 

  31. Askil J (1970) Tracer diffusion data for metals, alloys and simple oxides. Plenum Publishing Corporation, NY

    Book  Google Scholar 

Download references

Acknowledgements

The research reported in this paper was supported by NSF-DMR under grant number 1005677.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Kotan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotan, H., Darling, K.A., Saber, M. et al. An in situ experimental study of grain growth in a nanocrystalline Fe91Ni8Zr1 alloy. J Mater Sci 48, 2251–2257 (2013). https://doi.org/10.1007/s10853-012-7002-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-7002-1

Keywords

Navigation