Skip to main content
Log in

Room temperature fracture processes of a near-α titanium alloy following elevated temperature exposure

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Near-α titanium alloys are used at higher temperatures than any other class of titanium alloys. As a consequence of thermal exposure, these components may develop locally elevated oxygen concentrations at the exposed surface which can negatively impact ductility and resistance to fatigue crack initiation. In this work, monotonic and fatigue fracture mechanisms of Ti–6Al–2Sn–4Zr–2Mo–0.1Si samples exposed to laboratory air at 650 °C for 420 h were identified by means of a combination of quantitative tilt fractography, metallographic sectioning, and electron backscatter diffraction. These mechanisms were compared and contrasted with those operative during similar tests performed on material is the as-received condition with uniform oxygen content. While faceted fracture was not observed during quasi-static loading of virgin material, locally elevated concentrations of oxygen near the surfaces of exposed samples were shown to change the fracture mode from ductile, microvoid coalescence to brittle facet formation and grain boundary separation at stresses below the macroscopic yield point. Similar features and an increased propensity for facet formation were observed during cyclic loading of exposed samples. The effects of this time-dependent degradation on monotonic and cyclic properties were discussed in the context of the effect of oxygen on crack initiation and propagation mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Srinadh KVS, Singh V (2004) Bull Mater Sci 27:347

    Article  CAS  Google Scholar 

  2. Welsch G, Bunk W (1982) Metall Trans A 13:889

    Article  CAS  Google Scholar 

  3. Williams JC, Sommer AW, Tung PP (1972) Metall Trans 3:2979

    Article  CAS  Google Scholar 

  4. Shamblen CE, Redden TK (1968) In: Jaffee RI, Promisel NE (eds) The science, technology and application of titanium. Pergamon Press, New York, p 199

    Google Scholar 

  5. Shenoy RN, Unnam J, Clark RK (1986) Oxid Met 26:105

    Article  CAS  Google Scholar 

  6. Mahoney MW, Paton NE (1978) Metall Trans A 9:1497

    Article  Google Scholar 

  7. Bache MR, Evans WJ, Davies HM (1997) J Mater Sci 32:3435. doi:10.1023/A:1018624801310

    Article  CAS  Google Scholar 

  8. Sinha V, Mills MJ, Williams JC (2006) Metall Trans 37:2015

    Article  Google Scholar 

  9. Pilchak AL, Williams REA, Williams JC (2010) Metall Trans 41:106

    Article  Google Scholar 

  10. Bantounas I, Dye D, Lindley TC (2009) Acta Mater 57:3584

    Article  CAS  Google Scholar 

  11. Pilchak AL, Williams JC (2010) Metall Mater Trans A 41:22

    Article  Google Scholar 

  12. Ward-Close CM, Beevers CJ (1980) Metall Mater Trans A 11:1007

    Article  Google Scholar 

  13. Sarrazin-Baudoux C, Lesterlin S, Petit J (1996) Titanium 95(2):1895

    Google Scholar 

  14. Shiveley AR, Shade PA, Pilchak AL, Tiley JS, Kerns R (2011) J Microsc 244:181

    Article  CAS  Google Scholar 

  15. Pilchak AL, Shiveley AR, Tiley JS, Ballard DL (2011) J Microsc 244:38

    Article  CAS  Google Scholar 

  16. Themelis G, Chikwembani S, Weerman J (1990) Mater Charact 24:27

    Article  CAS  Google Scholar 

  17. Slavik DC, Wert JA, Gangloff RP (1993) J Mater Res 8:2482

    Article  CAS  Google Scholar 

  18. Sinha V, Mills MJ, Williams JC (2007) J Mater Sci 42:8334. doi:10.1007/s10853-006-0252-z

    Article  CAS  Google Scholar 

  19. McReynolds KS, Tamirisakandala S (2011) Metall Mater Trans A 42:1732

    Article  CAS  Google Scholar 

  20. Brockman RA, Pilchak AL, Porter WJ, John R (2011) Scripta Materialia 65:513

    Article  CAS  Google Scholar 

  21. Parthasarathy TA, Porter WJ, Boone S, John R, Martin PL (2011) Scripta Materialia 65:420

    Article  CAS  Google Scholar 

  22. Beachem CD, Pelloux RMN (1965) Fracture toughness testing and its applications. ASTM STP 381, p 210

  23. Mahajan Y, Margolin H (1982) Met Trans A 13:257

    Article  Google Scholar 

  24. Jago G, Bechet J, Bathis C (1996) Titanium 95(2):1203

    Google Scholar 

  25. Pilchak AL, Williams JC (2011) Metall Mater Trans A 42:1000

    Article  CAS  Google Scholar 

  26. Chesnutt JC, Spurling RA (1977) Met Trans A 8:216

    Article  Google Scholar 

  27. Van Stone RH, Cox TB (1976) Fractography—microscopic cracking processes. ASTM STP 600, p 5

  28. Van Stone RH, Low JR Jr, Shannon JL Jr (1978) Met Trans A 9:539

    Article  Google Scholar 

  29. Chesnutt JC, Williams JC (1977) Met Trans A 8A:514

    Article  CAS  Google Scholar 

  30. Ro YJ, Agnew SR, Gangloff RP (2005) Scripta Materialia 52:531

    Article  CAS  Google Scholar 

  31. Bowen AW (1975) Acta Metall 23:1401

    Article  CAS  Google Scholar 

  32. Salem AA, Glavicic MG, Semiatin SL (2008) Mater Sci Eng A 494:350

    Article  Google Scholar 

  33. Williams JC (1973) In: Jaffee RI, Burte HM (eds) Titanium science and technology. Plenum Press, New York, p 1454

    Google Scholar 

  34. Lütjering G, Williams JC (2003) Titanium. Springer, New York

    Google Scholar 

  35. Zeng L, Bieler TR (2005) Mater Sci Eng A 392:403

    Article  Google Scholar 

  36. Pilchak AL, Williams JC (2009) Metall Mater Trans A 40:2603

    Article  Google Scholar 

  37. Larson F, Zarkades A (1974) Metals and Ceramics Information Center Report 20:1

  38. Davidson DL, Eylon D (1980) Metall Mater Trans A 11:837

    Article  Google Scholar 

  39. Wagner L, Gregory JK, Gysler A, Lütjering G (1986) In: Ritchie RO, Lankford J (eds) Small fatigue cracks, Proceedings of the second engineering foundation international conference/workshop, Metallurgical Society, Santa Barbara, CA, pp 117–127

  40. Pilchak AL, Bhattacharjee A, Rosenberger AH, Williams JC (2009) Int J Fatigue 31:989

    Article  CAS  Google Scholar 

  41. Evans WJ, Jones JP, Whitaker MT (2005) Int J Fatigue 27:1244

    Article  CAS  Google Scholar 

  42. Sarrazin C, Chiron R, Lesterlin S, Petit J (1994) Fatigue Fract Eng Mater Struct 17:1383

    Article  CAS  Google Scholar 

  43. Larsen JM (1987) The effects of slip character and crack closure on the growth of small fatigue cracks in titanium-aluminum alloys, PhD Dissertation, Carnegie Mellon University (approved for public release in 1990)

  44. Liu Z, Welsch G (1988) Metal Trans A 19:527

    Article  Google Scholar 

  45. Ravichandran KS (1997) Metall Mater Trans A 28:149

    Article  Google Scholar 

  46. Ravichandran KS, Larsen JM (1997) Metall Mater Trans A 28:157

    Article  Google Scholar 

  47. Suresh S (1998) Fatigue of materials, 2nd edn. Cambridge University Press, New York, pp 541–568

  48. Santus C, Taylor D (2009) Int J Fatigue 31:1356

    Article  CAS  Google Scholar 

  49. Sinha V, Mills MJ, Williams JC (2004) Metall Mater Trans A 35:3141

    Article  Google Scholar 

  50. Jha SK, Caton MJ, Larsen JM (2007) Mater Sci Eng A 468–470:23

    Google Scholar 

Download references

Acknowledgements

This work was performed as part of the in-house research activities of the Air Force Research Laboratory, Materials and Manufacturing Directorate, AFRL/RXLM, Wright Patterson Air Force Base, OH. The financial support of the Air Force Office of Scientific Research through Task No. 09RX24COR, Dr. David Stargel, Program Manager, is gratefully acknowledged. Two of the authors were partially supported under onsite Air Force contracts FA8650-07-D-5800 (ALP), Dr. Ali Sayir, Program Manager, and FA8650-09- D-5223 (WJP) during the time this work was completed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Pilchak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pilchak, A.L., Porter, W.J. & John, R. Room temperature fracture processes of a near-α titanium alloy following elevated temperature exposure. J Mater Sci 47, 7235–7253 (2012). https://doi.org/10.1007/s10853-012-6673-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6673-y

Keywords

Navigation