Skip to main content

Advertisement

Log in

Thermal stability of the engineered interfaces in Wf/W composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Application of tungsten as a structural material is severely restricted due to its inherent brittleness. Recently, a novel toughening method for tungsten was proposed by the authors using tungsten wires as reinforcement. The idea is analogous to the fiber-reinforced ceramic–matrix composites theory which utilizes the internal energy dissipation caused by the debonding and frictional sliding at the fiber/matrix interfaces to absorb strain energy and to redistribute stress concentrations over an extended volume. To maximize the energy dissipation, the interfaces need to be engineered by coating which can withstand thermal exposure during service. In this work, we studied the thermal stability of various interfacial coatings after heat treatment. Microstructural change and the effect on mechanical properties were investigated by means of electron microscopy and fiber push-out tests. The results show that the microstructural phases of the analyzed interfaces remained relatively stable under thermal exposure of 800 °C for 10 h. Under such thermal exposure, the fracture energy of the Er/W multilayer and the ZrO x /Zr multilayer were affected by less than 10%, while it was increased by 40% for the ZrO x /W bilayer. The fracture energy of the C/W dual layer was decreased by a factor of 4, whereas for the Cu/W multilayer case it was increased by a factor of 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Du J (2011) PhD thesis, Technische Universität München

  2. Cho J, Boccaccini AR, Shaffer MSP (2009) J Mater Sci 44:1934. doi:10.1007/s10853-009-3262-9

    Article  CAS  Google Scholar 

  3. Ruggles-Wrenn MB, Koutsoukos P, Baek SS (2008) J Mater Sci 43:6734. doi:10.1007/s10853-008-2784-x

    Article  CAS  Google Scholar 

  4. Chaudhury Z, Hailat M, Liu Y, Newaz G (2011) J Mater Sci 46:1945. doi:10.1007/s10853-010-5030-2

    Article  CAS  Google Scholar 

  5. Du J, Höschen T, Rasinski M, Wurster S, Grosinger W, You JH (2010) Comp Sci Tech 70:1482

    Article  CAS  Google Scholar 

  6. Du J, Höschen T, Rasinski M, You JH (2010) Mater Sci Eng A 527:1623

    Article  Google Scholar 

  7. Du J, Höschen T, Rasinski M, You JH (2011) J Nucl Mater 417:472

    Article  CAS  Google Scholar 

  8. Suyama S, Kameda T, Itoh Y (2002) J Mater Sci 37:1101. doi:10.1023/A:1014346901308

    Article  CAS  Google Scholar 

  9. Greszczuk LB (1969) ASTM Spec Tech Publ 452:42

    Google Scholar 

  10. Lawrence P (1970) J Mater Sci 7:1. doi:10.1007/BF00549541

    Article  Google Scholar 

  11. Gray RJ (1984) J Mater Sci 19:861. doi:10.1007/BF00540456

    Article  Google Scholar 

  12. Shetty DK (1988) J Am Ceram Soc 71(2):C-107

    Article  CAS  Google Scholar 

  13. Liang C, Hutchinson JW (1993) Mech Mater 14:207

    Article  Google Scholar 

  14. Zhong Y, Shaw L (2011) J Mater Sci 46:6323. doi:10.1007/s10853-010-4937-y

    Article  CAS  Google Scholar 

  15. Shaginyan LR, Onoprienko AA, Britun VF, Smirnov VP (2001) Thin Solid Films 397:288

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was done in Max-Planck-Institut für Plasmaphysik (IPP). The authors are grateful to the colleagues of IPP Garching, Dr. A. Brendel, F. Koch, G. Matern, S. Lindig and M. Rasinski for their support for magnetron sputtering and microstructure analysis. The author Juan Du is also grateful to Chinese Scholarship Council (CSC) for the stipend support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, J., You, JH. & Höschen, T. Thermal stability of the engineered interfaces in Wf/W composites. J Mater Sci 47, 4706–4715 (2012). https://doi.org/10.1007/s10853-012-6339-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6339-9

Keywords

Navigation