Skip to main content
Log in

Effect of annealing on aqueous stability and elastic modulus of electrospun poly(vinyl alcohol) fibers

Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electrospun poly(vinyl alcohol) (PVA) fibers rapidly dissolve in water. Their aqueous stability can be improved by annealing using a combination of controlled temperature and treatment time. The increase in aqueous stability of the PVA fibers is associated with an increase in PVA crystallinity and is defined by X-ray diffraction and the ratio of the Fourier transform infrared spectroscopy band intensities at 1141 and 1425 cm−1. A ratio of intensity of these two infrared bands ≥2.5 or ~75% and above in the degree of crystallinity as determined by X-ray diffraction indicates fiber stability in water. Annealing treatment also results in an increase in the stiffness of the fibers. At a treatment temperature of 135 °C for 4 h, the elastic modulus of the fiber increased by 80%. This information is useful when these fibers are being considered for applications in an aqueous environment such as membrane filter or tissue scaffold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Formhals A (1940) US Patent 2187306

  2. Li D, Xia Y (2004) Adv Mater 16:1151

    Article  CAS  Google Scholar 

  3. Li M, Mondrinos MJ, Gandhi MR, Ko FK, Weiss AS, Lelkes PI (2005) Biomaterials 26:5999

    Article  PubMed  CAS  Google Scholar 

  4. Khil M-S, Cha D-I, Kim H-Y, Kim I-S, Bhattarai N (2003) J Biomed Mater Res 67B:675

    Article  CAS  Google Scholar 

  5. Gopal R, Kaur S, Ma Z, Chan C, Ramakrishna S, Matsuura T (2006) J Membr Sci 281:581

    Article  CAS  Google Scholar 

  6. Taepaiboon P, Rungsardthong U, Supaphol P (2006) Nanotechnology 17:2317

    Article  ADS  CAS  Google Scholar 

  7. Xu CY, Inai R, Kotaki M, Ramakrishna S (2004) Biomaterials 25:877

    Article  PubMed  CAS  Google Scholar 

  8. Li W-J, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) J Biomed Mater Res 60:613

    Article  PubMed  CAS  Google Scholar 

  9. Stevens MM, George JH (2005) Science 310:1135

    Article  PubMed  ADS  CAS  Google Scholar 

  10. Li D, Wang Y, Xia Y (2004) Adv Mater 16:361

    Article  CAS  Google Scholar 

  11. Zhang D, Chang J (2008) Nano Lett 8:3283

    Article  PubMed  ADS  CAS  Google Scholar 

  12. DeMerlis CC, Schoneker DR (2003) Food Chem Toxicol 41:319

    Article  PubMed  CAS  Google Scholar 

  13. Praptowidodo VS (2005) J Mol Struct 739:207

    Article  ADS  CAS  Google Scholar 

  14. Carvalho LB, Araujo AM, Almeida AMP, Azevedo WM (1996) Sens Actuators B Chem 36:427

    Article  Google Scholar 

  15. Rosiak JM, Ulanski P (1999) Radiat Phys chem 55:139

    Article  ADS  CAS  Google Scholar 

  16. Rosiak JM (1994) J Controlled Release 31:9

    Article  CAS  Google Scholar 

  17. Hassan CM, Peppas NA (2000) Biopolymers/Pva hydrogels/anionic polymerisation nanocomposites. Springer-Verlag Berlin, Berlin, p 37

  18. Kobayashi M, Chang Y-S, Oka M (2005) Biomaterials 26:3243

    Article  PubMed  CAS  Google Scholar 

  19. Jiang H, Campbell G, Boughner D, Wan W-K, Quantz M (2004) Med Eng Phys 26:269

    Article  PubMed  Google Scholar 

  20. Zhou Y, Yang D, Chen X, Xu Q, Lu F, Nie J (2008) Biomacromolecules 9:349

    Article  PubMed  CAS  Google Scholar 

  21. Wang Y, Hsieh YL (2008) J Membr Sci 309:73

    Article  CAS  Google Scholar 

  22. Yang D, Li Y, Nie J (2007) Carbohydr Polym 69:538

    Article  CAS  Google Scholar 

  23. Yao L, Haas TW, Guiseppi-Elie A, Bowlin GL, Simpson DG, Wnek GE (2003) Chem Mater 15:1860

    Article  CAS  Google Scholar 

  24. Naebe M, Lin T, Tian W, Dai L, Wang X (2007) Nanotechnology 18:225605

    Article  ADS  CAS  Google Scholar 

  25. Wong KKH, Hutter JL, Zinke-Allmang M, Wan W (2009) Eur Polym J 45:1349

    Article  CAS  Google Scholar 

  26. Millon LE, Mohammadi H, Wan WK (2006) J Biomed Mater Res B Appl Biomater 79B:305

    Article  CAS  Google Scholar 

  27. Wan WK, Campbell G, Zhang ZF, Hui AJ, Boughner DR (2002) J Biomed Mater Res 63:854

    Article  PubMed  CAS  Google Scholar 

  28. Millon LE, Nieh MP, Hutter JL, Wan W (2007) Macromolecules 40:3655

    Article  ADS  CAS  Google Scholar 

  29. Kenney JF, Willcockson GW (1966) J Polym Sci A-1 Polym Chem 4:679

    Article  CAS  Google Scholar 

  30. Peppas NA (1977) Die Makromolekulare Chemie 178:595

    Article  CAS  Google Scholar 

  31. Guhados G, Wan W, Hutter JL (2005) Langmuir 21:6642

    Article  PubMed  CAS  Google Scholar 

  32. Howard SA, Preston KD (1989) Rev Mineral Geochem 20:217

    Google Scholar 

  33. Fava R, Academic Press, New York (1980)

  34. Hermans PH, Weidinger A (1961) Die Makromolekulare Chemie 44:24

    Article  Google Scholar 

  35. Benedetti A, Cocco G, Fagherazzi G, Locardi B, Meriani S (1983) J Mater Sci 18:1039. doi:10.1007/BF00551972

    Article  ADS  CAS  Google Scholar 

  36. Hutter JL, Bechhoefer J (1993) Rev Sci Instrum 64:1868

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Council of Canada (NSERC). We acknowledge technical assistance from Western Nanofabrication Facility, Dr. Jeffrey L. Hutter, Kimberley R. Law and Donna T. Padavan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wankei Wan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, K.K.H., Zinke-Allmang, M. & Wan, W. Effect of annealing on aqueous stability and elastic modulus of electrospun poly(vinyl alcohol) fibers. J Mater Sci 45, 2456–2465 (2010). https://doi.org/10.1007/s10853-010-4217-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4217-x

Keywords

Navigation