Skip to main content
Log in

Photoluminescence of copper ion exchange BK7 glass planar waveguides

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Copper–alkali ion exchange technology was used to prepare BK7 glass planar waveguides. The photoluminescence spectra of the waveguides were studied with fluorescence spectrophotometer. It was observed that there were strong emission peaks at around 520 nm, which were strongly influenced by the ion-exchange times. Besides the time, the ion-exchange temperature was important factor as well, the higher ion-exchange temperature was found to bring a blue shift of emission spectra. The blue–green emission band originates from different transition mechanism of energy level. The spectroscopy features of copper within the glass host were also affected by the excitation wavelength, which resulted in a shift of the emission band peaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ramaswamy RV, Srivastava R (1988) IEEE J Lightwave Technol 6:984

    Article  CAS  Google Scholar 

  2. Martin M, Videau JJ, Canioni L, Adameitz F, Sarger L, Leflem G (2000) Appl Opt 39:435

    Article  CAS  Google Scholar 

  3. Yoko T, Nishiwaki T, Kamiya K, Sakka SJ (1991) J Am Ceram Soc 74:1104

    Article  CAS  Google Scholar 

  4. Márquez H, Salazar D, Villalobos A, Paez G, Rincón JM (1995) Appl Opt 34:5817

    Article  Google Scholar 

  5. D’Acapito F, Colonna S, Mobilio S, Gonella F, Cattaruzza E, Mazzoldi P (1997) Appl Phys Lett 71:2611

    Article  Google Scholar 

  6. Bogomolova LD, Fedorov AG, Kubrinskaya ME, Lazukin VN, Pavlushkina TK, Serpov PV (1985) J Non-Cryst Solids 72:109

    Article  CAS  Google Scholar 

  7. Gonella F, Quaranta A, Padovni S, Sada C, D’acapito F, Maurizio C, Battaglin G, Cattaruzza E (2005) Appl Phys A 81:1065

    Article  CAS  Google Scholar 

  8. Spirkova J, Tresnakova P, Malichova H, Mika M (2007) J Phys Chem Solids 68:1276

    Article  Google Scholar 

  9. Pedrini C, Jaquier B (1980) J Phys C Solid State Phys 13:4791

    Article  CAS  Google Scholar 

  10. Sakka S, Kamiya K, Kato K (1982) J Non-Cryst Solids 52:77

    Article  CAS  Google Scholar 

  11. Erwin SC, Lin CC (1989) Phys Rev B 40:1892

    Article  CAS  Google Scholar 

  12. Borsella E, Dal Vecchio A, Garcia MA, Sada C, Gonella F, Polloni R, Quaranta A, Van Wilderen LJGW (2002) J Appl Phys 91:90

    Article  CAS  Google Scholar 

  13. White JM, Heidrich PF (1976) Appl Opt 15:151

    Article  CAS  Google Scholar 

  14. Gonella F, Caccavale F, Bogomolova LD, D’Acapito F, Quaranta A (1998) J Appl Phys 83:1200

    Article  CAS  Google Scholar 

  15. Inman JM, Houde-Walter SN, McIntyre BL, Liao ZM, Parker RS, Simmons V (1996) J Non-Cryst Solids 194:85

    Article  CAS  Google Scholar 

  16. Dong Y, Gao YJ, Zhang LT, Jia LH, Zheng J (2008) J Optoelectron Laser 19:443

    CAS  Google Scholar 

  17. Miliou AN, Srivastava R, Ramaswamy RV (1991) Appl Opt 30:674

    Article  CAS  Google Scholar 

  18. Tessman JR, Kahn AH, Shockley W (1953) Phys Rev 92:890

    Article  CAS  Google Scholar 

  19. Brandenburg A (1986) J Lightwave Technol 4:1580

    Article  Google Scholar 

  20. Debnath R, Das SK (1989) Chem Phys Lett 155:52

    Article  CAS  Google Scholar 

  21. Pedrini C (1978) Phys Status Solidi B 87:273

    Article  CAS  Google Scholar 

  22. Annapurna K, Kumar A, Dwivedi RN, Sooraj Hussain N, Buddhudu S (2000) Mater Lett 45:23

    Article  CAS  Google Scholar 

  23. Oliver A, Cheang-Wong JC, Roiz J, Hernández JM, Rodriguez-Fernández L, Crespo A (2001) Nucl Instr Methods Phys Res B 175–177:495

    Article  Google Scholar 

  24. Berg JM, Chien RL, McClure DS (1987) J Chem Phys 87:7

    Article  CAS  Google Scholar 

  25. Tanaka K, Yano T, Shibata S, Yamane M, Inoue S (1994) J Non-Cryst Solids 178:9

    Article  CAS  Google Scholar 

  26. Fujimoto Y, Nakatsuta M (1977) J Lumin 75:213

    Article  Google Scholar 

  27. Klonkowski A, Gryczynski I (1981) J Non-Cryst Solids 44:415

    Article  CAS  Google Scholar 

  28. Duffy JA, Ingram MD (1976) J Non-Cryst Solids 21:373

    Article  CAS  Google Scholar 

  29. Debnath R (1989) J Lumin 43:375

    Article  CAS  Google Scholar 

  30. Auzel F, Pelle F (1996) J Lumin 69:249

    Article  CAS  Google Scholar 

  31. Cable M, Xiang ZD (1992) Phys Chem Glasses 33:154

    CAS  Google Scholar 

  32. Vij DR (1998) Luminescence of solids. Plenum Press, New York

    Book  Google Scholar 

Download references

Acknowledgements

The research project has been supported by National Natural Science Foundation of China (No. 60577008, 60777038), China–Ireland Science and Technology Collaboration Research Fund and International cooperation project (No. 20070708-3) of Jilin Provincial Science & Technology Department of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ti, Y., Qiu, F., Cao, Y. et al. Photoluminescence of copper ion exchange BK7 glass planar waveguides. J Mater Sci 43, 7073–7078 (2008). https://doi.org/10.1007/s10853-008-3057-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3057-4

Keywords

Navigation