Skip to main content
Log in

Preparation and properties of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blend with glycidyl methacrylate as reactive processing agent

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) were melt-blended in the presence of glycidyl methacrylate (GMA) by twin-screw extrusion. The physical properties, phase morphology, thermal properties, and melt rheological behavior of the blends were investigated by tensile tests, Charpy impact tests, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and advanced rheology expended system (ARES). With 2 or 5 wt% GMA, the tensile toughness of the PLA/PBAT blend was greatly increased without severe loss in tensile strength. The impact strength of the blend was also significantly improved at 1 wt% of GMA addition but ultimately trended to be saturated with increasing GMA. SEM micrographs revealed that better miscibility and more shear yielding mechanism were involved in the toughening of the blend. DSC results indicated that the blend is still a two-phase system in the presence of reaction agent and the addition of GMA was found to enhance the interfacial adhesion between PLA and PBAT. Rheological results revealed that the addition of T-GMA increased the storage moduli (G′), loss moduli (G′′) and complex viscosity of the blends at nearly all frequencies. The decreased shear-thinning tendency of the blends in the presence of T-GMA also implied improved melt stability during processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sodergard A, Scolt M (2002) Prog Polym Sci 27:1123

    Article  CAS  Google Scholar 

  2. Van de Velde K, Kiekens P (2002) Polym Test 21:433

    Article  Google Scholar 

  3. Lunt J (1998) Polym Degrad Stab 59:145

    Article  CAS  Google Scholar 

  4. Miyata T, Masuko T (1998) Polymer 39:5515

    Article  CAS  Google Scholar 

  5. Iannace S, Maffezzoli A, Leo G et al (2001) Polymer 42(8):3799

    Article  CAS  Google Scholar 

  6. Wehrenberg RH II (1981) Mater Eng 94:63

    CAS  Google Scholar 

  7. Lipinsky ES, Sinclair RG (1986) Chem Eng Prog 82:26

    CAS  Google Scholar 

  8. Meinander K, Niemi M, Hakola JS, Selin JF (1997) Macromol Symp 123:133

    Article  Google Scholar 

  9. Witt U, Einig T, Yamamoto M et al (2001) Chemosphere 44:289

    Article  CAS  Google Scholar 

  10. Gan ZH, Kuwabara K, Yamamoto M et al (2004) Polym Degrad Stab 83:289

    Article  CAS  Google Scholar 

  11. Kim J, Kim JH, Shin TK (2001) Eur Polym J 37:2131

    Article  CAS  Google Scholar 

  12. Choi HJ, Park SH, Yoon JS (1995) Polym Eng Sci 35(20):1636

    Article  CAS  Google Scholar 

  13. Guan J, Fang Q, Hanna MA (2004) J Polym Environ 12(2):57

    Article  CAS  Google Scholar 

  14. Zhang JW, Jiang L, Zhu LY (2006) Biomacromolecules 7:1551

    Article  CAS  Google Scholar 

  15. Jiang L, Wolcott MP, Zhang J (2006) Biomacromolecules 7(1):199

    Article  Google Scholar 

  16. Bhatia A, Gupta RK, Bhattacharya SN, Choi HJ (2007) Korea-Australia Rheol J 19(3):125

    Google Scholar 

  17. Ma XF, Yu JG, Wang N (2006) J Polym Sci B Polym Phys 44:94

    Article  CAS  Google Scholar 

  18. Wang L, Ma W, Gross RA, McCarthy SP (1998) Polym Degrad Stab 59:161

    Article  CAS  Google Scholar 

  19. John J, Bhattacharya M (2000) Polym Int 49:860

    Article  CAS  Google Scholar 

  20. Semba T, Kitagawa K, Ishiaku US et al (2006) J Appl Polym Sci 101:1816

    Article  CAS  Google Scholar 

  21. Harada M, Ohya T, Iida K (2007) J Appl Polym Sci 106:1813

    Article  CAS  Google Scholar 

  22. Wu JS, Yee AF, Mai YW (1994) J Mater Sci 29:4510. doi:https://doi.org/10.1007/BF00376274

    Article  CAS  Google Scholar 

  23. Kunz-Douglass S, Beaumont PWR, Ashby MF (1980) J Mater Sci 15:1109. doi:https://doi.org/10.1007/BF00551799

    Article  CAS  Google Scholar 

  24. Pearson RA, Yee AF (1991) J Mater Sci 26:3828. doi:https://doi.org/10.1007/BF01184979

    Article  CAS  Google Scholar 

  25. Kambour RP, Russell RR (1971) Polymer 12:237

    Article  CAS  Google Scholar 

  26. Wu S (1985) Polymer 26:1855

    Article  CAS  Google Scholar 

  27. Bucknall CB, Clayton D, Keast WE (1973) J Mater Sci 8:514. doi:https://doi.org/10.1007/BF00550456

    Article  CAS  Google Scholar 

  28. Yee AF, Li D, Li XJ (1993) J Mater Sci 28:6392. doi:https://doi.org/10.1007/BF01352202

    Article  CAS  Google Scholar 

  29. Gu SY, Zhang K, Ren J, Zhan H (2008) Carbohydr Polym. doi:https://doi.org/10.1016/j.carbpol.2008.01.017

    Article  CAS  Google Scholar 

  30. Hyun YH, Lim ST, Choi HJ et al (2001) Macromolecules 34:8084

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National 863 Program of China (No. 2006AA02Z248), the Program for New Century Excellent Talents in University (No. NCET-05-0389), the Program of Shanghai Subject Chief Scientist (No. 07XD14029) and the fund of Shanghai International co-operation of Science and Technology (No. 075207046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, N., Wang, Q., Ren, J. et al. Preparation and properties of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blend with glycidyl methacrylate as reactive processing agent. J Mater Sci 44, 250–256 (2009). https://doi.org/10.1007/s10853-008-3049-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3049-4

Keywords

Navigation