Skip to main content
Log in

On interfacial velocities during abnormal grain growth at ultra-high driving forces

  • Interface Science
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Interfacial velocities during grain growth studies of nanocrystalline materials have been investigated. Two types of interfacial velocity parameters were developed in Ni and Ni–Co alloys. The first was a transformation-averaged parameter based on the time to consume the nanocrystalline matrix by abnormal grain growth. The second was a time-averaged parameter based on the rate of size increase of the largest growing grains. Despite the ultra-high driving force and rapid loss of nanostructure during annealing, the averaged grain boundary velocities are considerably lower than reported velocities during recrystallization in high purity systems for the same homologous temperature. It was found that the time-averaged abnormal growth front velocity decreased with increasing migration distance, which was interpreted in terms of a dynamic sulfur segregation model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Klement U, Erb U, El-Sherik AM et al (1995) Mater Sci Eng A 203:177. doi:https://doi.org/10.1016/0921-5093(95)09864-X

    Article  Google Scholar 

  2. Wang N, Wang Z, Aust KT et al (1997) Acta Mater 45:1655. doi:https://doi.org/10.1016/S1359-6454(96)00254-6

    Article  CAS  Google Scholar 

  3. Natter H, Schmelzer M, Hemplemann R (1998) J Mater Res 13:1186. doi:https://doi.org/10.1557/JMR.1998.0169

    Article  CAS  Google Scholar 

  4. Hibbard GD, Erb U, Aust KT et al (2000) Mater Res Soc Symp Proc 580:183

    Article  CAS  Google Scholar 

  5. Hibbard GD, Erb U, Aust KT et al (2002) Mater Sci Forum 386–388:387

    Article  Google Scholar 

  6. Hibbard GD, Aust KT, Palumbo G et al (2001) Scr Mater 44:513. doi:https://doi.org/10.1016/S1359-6462(00)00628-X

    Article  CAS  Google Scholar 

  7. Hibbard GD, Radmilovic V, Aust KT et al (2008) Mater Sci Eng A 494:232. doi:https://doi.org/10.1016/j.msea.2008.04.054

    Article  Google Scholar 

  8. Cheng L, Hibbard GD (2008) Mater Sci Eng A. doi:https://doi.org/10.1016/j.msea.2008.03.025

    Article  Google Scholar 

  9. Kim BK, Szpunar JA, Varano R (2002) Mater Sci Forum 408–412:937

    Article  Google Scholar 

  10. Seo JH, Kim JK, Yim TH et al (2005) Mater Sci Forum 475–479:3483

    Article  Google Scholar 

  11. Klement U, da Silva M (2007) J Alloys Comp 434–435:714

    Article  Google Scholar 

  12. Lee SB, Hwang NM, Yoon DY, Henry MF (2000) Met Mater Trans A 31:985

    Article  Google Scholar 

  13. Czerwinski F, Li H, Megret M et al (1997) Scripta Mater 37:1967

    Article  CAS  Google Scholar 

  14. Park YB, Park J, Ha CS et al (2002) Mater Sci Forum 408–412:919

    Article  Google Scholar 

  15. Kim JK, Seo JH, Park YB (2004) Mater Sci Forum 467–470:1313

    Article  Google Scholar 

  16. Hibbard GD, Aust KT, Erb U (2006) Mater Sci Eng A 433:195

    Article  Google Scholar 

  17. Erb U, El-Sherik AM (1994) US Patent 5353266

  18. Erb U, El-Sherik AM, Cheung CKS et al (1995) US Patent 5433797

  19. El-Sherik AM, Erb U (1995) J Mater Sci 30:5743

    Article  CAS  Google Scholar 

  20. Chen LC, Spaepen F (1991) J Appl Phys 69:679

    Article  CAS  Google Scholar 

  21. Haessner F, Hofman S (1978) In: Haessner F (ed) Recrystallization of metallic materials. Riederer Verlag, Stuttgart

    Google Scholar 

  22. Gottstein G, Shvindlerman LS (1999) Grain boundary migration in metals. CRC Press, New York

    Google Scholar 

  23. Humphreys FJ, Hatherley M (2004) Recrystallization and related annealing phenomena. Elsevier, Oxford

    Google Scholar 

  24. DeHoff RT, Rhines FN (1968) Quantitative microscopy. McGraw-Hill, New York

    Google Scholar 

  25. Murr LE (1975) Interfacial phenomena in metals and alloys. Addison-Wesley, Don Mills, Canada

    Google Scholar 

  26. Aust KT, Rutter JW (1959) Trans AIME 215:119

    CAS  Google Scholar 

  27. Shvindlerman LS, Gottstein G, Molodov DA (1997) Phys Stat Sol A 160:419

    Article  CAS  Google Scholar 

  28. Gordon P, Vandermeer RA (1962) Trans AIME 224:917

    CAS  Google Scholar 

  29. Fromageau R (1969) Mem Sci Rev Metall 66:287

    CAS  Google Scholar 

  30. Haessner F, Holzer HP (1974) Acta Met 22:695

    Article  CAS  Google Scholar 

  31. Grunwald W, Haessner F (1970) Acta Metall 18:217

    Article  Google Scholar 

  32. Huang Y, Humphreys FJ (1999) Acta Mater 47:2259

    Article  CAS  Google Scholar 

  33. LeGall R, Liao G, Saindrenan G (1999) Scripta Mater 41:427

    Article  CAS  Google Scholar 

  34. Schmidt S, Nielsen SF, Gundlach C et al (2004) Science 305:229

    Article  CAS  Google Scholar 

  35. Burke JE, Turnbull D (1952) Prog Metal Phys 3:220

    Article  CAS  Google Scholar 

  36. Cahn JW (1962) Acta Met 10:789

    Article  CAS  Google Scholar 

  37. Lucke K, Stuwe HP (1963) In: Himmel L (ed) Recovery and recrystallization of metals. Wiley, New York

    Google Scholar 

  38. Smith CS (1948) Trans AIME 175:15

    Google Scholar 

  39. Pierantoni M, Aufray B, Cabane F (1985) Acta Met 33:1625

    Article  CAS  Google Scholar 

  40. Bruemmer SM, Jones RJ, Thomas MT et al (1981) In: Louthan MR, McNitt RP, Sisson RD Jr (eds) Environmental degradation of engineering materials in aggressive environments. Virgina Tech Printing, Blacksburg, VA

    Google Scholar 

  41. Beaunier L, Chefi C, Froment M et al (1981) Mem Sci Rev Metall 78:417

    Google Scholar 

  42. Aust KT, Rutter JW (1962) In: Ultra high purity metals. ASM, Metals Park OH

  43. Roeder E, Klerk M (1963) Z Metallkde 54:462

    CAS  Google Scholar 

  44. Hook RE, Garrett HJ, Adair AM (1963) Trans AIME 227:145

    CAS  Google Scholar 

  45. Barbier-Vitart J, Saindrenan G, Larere A (1982) J Mater Sci 17:387

    Article  CAS  Google Scholar 

  46. Saindrenan G, Larere A (1984) Scripta Met 18:969

    Article  CAS  Google Scholar 

  47. Le Gall R, Saindrenan G, Roptin D (1992) Scripta Mater 26:1291

    Article  CAS  Google Scholar 

  48. Thuvander M, Abraham M, Cerezo A et al (2001) Mater Sci Tech 17:961

    Article  CAS  Google Scholar 

  49. Hibbard GD, Aust KT, Erb U (2006) Acta Mater 54:2501

    Article  CAS  Google Scholar 

  50. Mehta SC, Smith DA, Erb U (1995) Mater Sci Eng A 204:227

    Article  Google Scholar 

  51. Hatter K, Follstaedt DM, Knapp JA, Robertson IM (2008) Acta Mater 56:794

    Article  Google Scholar 

  52. Knapp JA, Follstaedt DM (2004) J Mater Res 19:218

    Article  CAS  Google Scholar 

  53. Natter H, Loffler MS, Krill CE, Hempelmann R (2001) Scripta Mater 44:2321

    Article  CAS  Google Scholar 

  54. Gleiter H (1979) Acta Metall 27:187

    Article  Google Scholar 

  55. Estrin Y, Gottstein G, Shvindlerman LS (1999) Scripta Mater 41:385

    Article  CAS  Google Scholar 

  56. Palumbo G, Thorpe SJ, Aust KT (1990) Script Metall 24:1347

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) and nanocrystalline Ni and Ni–Co samples from Integran Technologies Inc. of Toronto, Canada are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Hibbard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hibbard, G.D., Aust, K.T. & Erb, U. On interfacial velocities during abnormal grain growth at ultra-high driving forces. J Mater Sci 43, 6441–6452 (2008). https://doi.org/10.1007/s10853-008-2975-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2975-5

Keywords

Navigation