Skip to main content
Log in

Photoluminescent properties of ZnS:Mn nanoparticles with in-built surfactant

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Mn-doped ZnS nanoparticles, having average diameter 3–5 nm, have been synthesized using chemical precipitation technique without using any external capping agent. Zinc blende crystal structure has been confirmed using the X-ray diffraction studies. The effect of various concentrations of Mn doping on the photoluminescent properties of ZnS nanoparticles has been studied. The time-resolved photoluminescence spectra of the ZnS:Mn quantum dots have been recorded and various parameters like lifetimes, trap depths, and decay constant have been calculated from the decay curves at room temperature. The band gap was calculated using UV–Visible absorption spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bhargava RN (1997) J Lumin 72–74:46. doi:https://doi.org/10.1016/S0022-2313(96)00162-7

    Article  Google Scholar 

  2. Bhargava RN (1996) J Lumin 70:85. doi:https://doi.org/10.1016/0022-2313(96)00046-4

    Article  CAS  Google Scholar 

  3. Zhao Y, Zhang Y, Zhu H, Hadjipanayis GC, Xiao JQ (2004) J Am Chem Soc 126:6874. doi:https://doi.org/10.1021/ja048650g

    Article  CAS  Google Scholar 

  4. Lu SW, Lee BI, Wang ZL, Tong W, Wagner BK, Park W et al (2001) J Lumin 92:73. doi:https://doi.org/10.1016/S0022-2313(00)00238-6

    Article  Google Scholar 

  5. Hu JT, Li LS, Yang WD, Manna L, Wang LW, Alivisatos AP (2001) Science 292:2060. doi:https://doi.org/10.1126/science.1060810

    Article  CAS  Google Scholar 

  6. Cruz AB, Shen Q, Toyoda T (2005) Mater Sci Eng C 25:761. doi:https://doi.org/10.1016/j.msec.2005.06.022

    Article  Google Scholar 

  7. Denzler D, Olschewski M, Sattler K (1998) J Appl Phys 84:2841. doi:https://doi.org/10.1063/1.368425

    Article  CAS  Google Scholar 

  8. Chen W, Sammynaiken R, Huang Y, Malm JO, Wallenberg R, Bovin JO et al (2001) J Appl Phys 89:1120. doi:https://doi.org/10.1063/1.1332795

    Article  CAS  Google Scholar 

  9. Kubo T, Isobe T, Sena M (2002) J Lumin 99:39. doi:https://doi.org/10.1016/S0022-2313(02)00296-X

    Article  CAS  Google Scholar 

  10. Lacomi F (2003) Surf Sci 532:816. doi:https://doi.org/10.1016/S0039-6028(03)00446-1

    Google Scholar 

  11. Yuan H, Xie S, Liu D, Yan X, Zhou Z, Ci L (2003) J Cryst Growth 258:225. doi:https://doi.org/10.1016/S0022-0248(03)01502-1

    Article  CAS  Google Scholar 

  12. Kim D, Min K, Lee J, Park JH, Chun JH (2006) Mater Sci Eng B 131:13. doi:https://doi.org/10.1016/j.mseb.2005.11.005

    Article  CAS  Google Scholar 

  13. Cullity BD (1956) Element of X-ray diffraction, 2nd edn. Addison-Wesley, New York, p 99

    Google Scholar 

  14. Yao JH, Elder KR, Guo H, Grant M (1993) Phys Rev B 47:14110. doi:https://doi.org/10.1103/PhysRevB.47.14110

    Article  CAS  Google Scholar 

  15. Warad HC, Gosh SC, Hemtanon B, Thanochayonont C, Dutta J (2005) Sci Technol Adv Mater 6:296

    Article  CAS  Google Scholar 

  16. Zou X, Ying E, Dong S (2006) Nanotechnology 17:4758. doi:https://doi.org/10.1088/0957-4484/17/18/038

    Article  CAS  Google Scholar 

  17. Silverstein RM, Clayton Bassler G, Morrill TC (1991) Spectrometric identification of organic compounds, 5th edn. Wiley, New York, pp 91–164

    Google Scholar 

  18. Bol AA, Meijerink A (1998) Phys Rev B 58:R15997. doi:https://doi.org/10.1103/PhysRevB.58.R15997

    Article  CAS  Google Scholar 

  19. Kar S, Chaudhari S (2005) J Phys Chem B 109:3298. doi:https://doi.org/10.1021/jp045817j

    Article  CAS  Google Scholar 

  20. Falcony C, Garcia M, Ortiz A, Zlonso JC (1992) J Appl Phys 72:1525. doi:https://doi.org/10.1063/1.351720

    Article  CAS  Google Scholar 

  21. Samelson H, Lempicki A (1962) Phys Rev 125:901. doi:https://doi.org/10.1103/PhysRev.125.901

    Article  CAS  Google Scholar 

  22. Bhatti HS, Sharma R, Verma NK (2005) Parmana 65:541. doi:https://doi.org/10.1007/BF02704213

    Article  CAS  Google Scholar 

  23. Cruz AB, Shen Q, Toyoda T (2005) Jpn J Appl Phys 44:4354. doi:https://doi.org/10.1143/JJAP.44.4354

    Article  CAS  Google Scholar 

  24. Bhattacharyya D, Chaudhari S, Pal AK (1992) Vacuum 43:313. doi:https://doi.org/10.1016/0042-207X(92)90163-Q

    Article  CAS  Google Scholar 

  25. Vlasenko NA, Zynio SA, Kopytiko Y (1975) Phys Stat Solidi a 29:671

    Article  CAS  Google Scholar 

  26. Bube RH (1950) Phys Rev 80:655. doi:https://doi.org/10.1103/PhysRev.80.655

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We acknowledge Defence Research and Development Organisation (DRDO), Government of India, for their generous funding for the research work vide their letter No. ERIP/ER/0504321/M/01/855 dated 16th December 2005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zinki Jindal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jindal, Z., Verma, N.K. Photoluminescent properties of ZnS:Mn nanoparticles with in-built surfactant. J Mater Sci 43, 6539–6545 (2008). https://doi.org/10.1007/s10853-008-2818-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2818-4

Keywords

Navigation