Skip to main content
Log in

The effect of annealing on deformation and fracture of a nanocrystalline fcc metal

  • Nano May 2006
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The tensile deformation and fracture behavior of electrodeposited nanocrystalline Ni–15% Fe alloy samples after annealing for 90 min at 250, 400 and 500 °C temperatures were investigated. The structure of the samples was studied using TEM and XRD techniques and the fracture surfaces were investigated employing SEM. The results of this study indicated that annealing at 250 °C modified grain size distribution slightly but resulted in a significant increase in the initial strain hardening rate. While the average grain size in the 400 °C sample was increased to 59 nm, its yield strength was comparable to the as-deposited alloy with a 9 nm grain size. The plastic tensile elongation of all annealed samples was lowered significantly to less than 1% from approximately 6% in the as-deposited state. These results are discussed in terms of the inhomogeneity of plastic deformation and the evolution of internal stresses in nanocrystalline materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Karimpour AA, Erb U, Aust KT, Plaumbo G (2003) Scripta Mater 49:651

    Article  CAS  Google Scholar 

  2. Li H, Ebrahimi F (2004) Appl Phys Lett 84:4307

    Article  CAS  Google Scholar 

  3. Shen YF, Lu L, Lu QH, Jin ZH, Lu K (2005) Scripta Mater 52:989

    Article  CAS  Google Scholar 

  4. Youssef KM, Scattergood RO, Murty KL, Horton JA, Koch CC (2005) Appl Phys Lett 87:929

    Article  CAS  Google Scholar 

  5. Nieh TG, Wadsworth J (1991) Scripta Metall Mater 25:955

    Article  CAS  Google Scholar 

  6. Lian J, Baudelet B, Nazarov AA (1993) Mater Sci Eng 172:23

    Article  Google Scholar 

  7. Embury JD, Hirth JP (1994) Acta Metall Mater 42:2051

    Article  Google Scholar 

  8. Chokshi AH, Rosen A, Karch J, Gleiter H (1989) Scripta Metall 23:1679

    Article  CAS  Google Scholar 

  9. Milligan WW, Hackney SA, Ke M, Aifantis EC (1993) Nanostruct Mater 2:267

    Article  CAS  Google Scholar 

  10. Hahn H, Padmanabhan KA (1997) Philos Mag 76:559

    CAS  Google Scholar 

  11. Schiøtz J, Di Tolla FD, Jacobsen KW (1998) Nature 391:561

    Article  Google Scholar 

  12. Van Swygenhoven H, Spaczer M, Caro A (1999) Acta Mater 47:3117

    Article  Google Scholar 

  13. Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H (2003) Philos Mag Lett 83:385

    CAS  Google Scholar 

  14. Ke M, Hackney SA, Milligan WW, Aifantis EC (1995) Nanostruct Mater 5:689

    Article  CAS  Google Scholar 

  15. Shan Z, Stach EA, Wiezorek JMK, Knapp JA, Follstaedt DM, Mao SX (2004) Science 305:654

    Article  CAS  Google Scholar 

  16. Li H, Ebrahimi F (2005) Adv Mater 17:1969

    Article  CAS  Google Scholar 

  17. Weertman JR, Sanders PG (1993) Solid State Phenom 35–36:249

    Article  Google Scholar 

  18. Wang YM, Cheng S, Wei QM, Ma E, Nieh TG, Hamza A (2004) Scripta Mater 51:1023

    Article  CAS  Google Scholar 

  19. Hasnaoui A, Van Swygenhoven H, Derlet PM (2002) Acta Mater 50:3927

    Article  CAS  Google Scholar 

  20. Huang X, Hansen N, Tsuji N (2006) Science 312:249

    Article  CAS  Google Scholar 

  21. Ma E, Shen TD, Wu XL (2006) Nature Mater 5:515

    Article  CAS  Google Scholar 

  22. Li H, Ebrahimi F (2003) Acta Mater 51:3905

    Article  CAS  Google Scholar 

  23. Li H, Ebrahimi F (2003) Mater Sci Eng A347:93

    CAS  Google Scholar 

  24. Ebrahimi F, Li H (2006) Scripta Mater 55:263

    Article  CAS  Google Scholar 

  25. Li H, Ebrahimi F (2006) Acta Mater 54:2877

    Article  CAS  Google Scholar 

  26. Yamakov V, Wolf D, Salazar M, Phillpot SR, Gleiter H (2001) Acta Mater 49:2713

    Article  CAS  Google Scholar 

  27. Cheng S, Spencer JA, Milligan WW (2003) Acta Mater 51:4505

    Article  CAS  Google Scholar 

  28. Schiøtz J, Jacobsen KW (2003) Science 301:1357

    Article  CAS  Google Scholar 

  29. Johnston WG, Gilman JH (1959) J Appl Phys 30:129

    Article  CAS  Google Scholar 

  30. Mitra R, Ungar T, Morita T, Sanders PG, Weertman JR (1999) In: Chung Y-W et al (eds) Advanced materials for 21st century: the 1999 Julia Weertman symposium. TMS Publication, Warrendale Pacific, p 553

  31. Ebrahimi F, Ahmed Z, Morgan KL (2001) MRS Proc 634:B2.7.1

    Google Scholar 

  32. Tomota Y, Huroki K, Mori T, Tamura I (1976) Mater Sci Eng 24:85

    Article  CAS  Google Scholar 

  33. Dieter GE (1986) Mechanical metallurgy, 3rd edn. McGrow-Hill, New York, p. 187

  34. Ovi’ko IA, Sheinerman AG (2004) Acta Mater 52:1201

    Article  CAS  Google Scholar 

  35. Espinosa HD, Berbenni S, Panico M, Schwarz KW (2005) Proc Nat Acad Sci 102:16933

    Article  CAS  Google Scholar 

  36. Evans AG, Hirth JP (1992) Scripta Metall Mater 26:1675

    Article  CAS  Google Scholar 

  37. Ebrahimi F, Zhai Q, Kong D (1998) Scripta Mater 39:315

    Article  CAS  Google Scholar 

  38. Ebrahimi F, Bourne GR, Kelly MS, Matthews TE (1999) Nanostruct Mater 11:343

    Article  CAS  Google Scholar 

  39. Ebrahimi F, Zhai Q, Kong D, Bourne GR (1999) In: Chung et al Y-W (eds) Advanced materials for 21st century: the 1999 Julia Weertman symposium. TMS Publication, Warrendale Pacific, p 421

  40. Ebrahimi F, Ahmed Z, Li HQ (2006) Materials and manufacturing processes 21:687

    Article  CAS  Google Scholar 

  41. Ma E (2006) JOM 58:49

    CAS  Google Scholar 

  42. ASM Handbook (1974) vol 9, 8th edn. ASM International, Ohio, p 72

Download references

Acknowledgements

Financial support for this research was provided by the National Science Foundation under the grant DMR-9980213 and DMR-0605406.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fereshteh Ebrahimi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebrahimi, F., Li, H. The effect of annealing on deformation and fracture of a nanocrystalline fcc metal. J Mater Sci 42, 1444–1454 (2007). https://doi.org/10.1007/s10853-006-0969-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0969-8

Keywords

Navigation