Skip to main content
Log in

Direct measurement of the kinetics of geopolymerisation by in-situ energy dispersive X-ray diffractometry

  • Advances in Geopolymer Science & Technology
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In-situ energy dispersive X-ray diffractometry (EDXRD) using synchrotron radiation has been used to directly observe the kinetics of formation of a geopolymeric gel from a metakaolin precursor. The use of a purpose-built hydrothermal cell with polychromatic radiation from a wiggler source enables collection of a full diffraction pattern approximately every 150 s. This provides sufficient time resolution to observe the collapse of the metakaolin structure as it dissolves in the activating solution, accompanied by the reprecipitation of the geopolymeric gel binder phase from the now-supersaturated solution. Measurements taken on a limited set of samples of different composition (Si/Al ratio) show a clear trend in the rate of reaction with composition, and also a distinctly different mechanism of reaction in the most highly alkaline systems compared to those containing higher levels of dissolved silica in the activating solution. This corresponds to the results of previous microscopic observations showing significantly different microstructures in these systems, and confirms the value of this technique in analysis of the kinetics of geopolymerisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lee WKW, Van Deventer JSJ (2002) Cem Conc Res 32:577

    Article  CAS  Google Scholar 

  2. Rahier H, Van Mele B, Biesemans M, Wastiels J, Wu X (1996) J Mater Sci 31:71

    Article  CAS  Google Scholar 

  3. Granizo ML, Blanco-Varela MT, Palomo A (2000) J Mater Sci 35:6309

    Article  CAS  Google Scholar 

  4. Rahier H, Van Mele B, Wastiels J (1996) J Mater Sci 31:80

    Article  CAS  Google Scholar 

  5. Phair JW, Smith JD, Van Deventer JSJ (2003) Mater Lett 57:4356

    Article  CAS  Google Scholar 

  6. Provis JL, Duxson P, Van Deventer JSJ, Lukey GC, (2005) Chem Eng Res Des 83:853

    Article  CAS  Google Scholar 

  7. Wei S, Zhang Y-S, Wei L, Liu Z-Y, (2004) Cem Conc Res 34:935

    Article  CAS  Google Scholar 

  8. Olanrewaju J (2002) Ph.D. Thesis, Pennsylvania State University, 268 pp

  9. Provis JL, Lukey GC, Van Deventer JSJ (2005) Chem Mater 17:3075

    Article  CAS  Google Scholar 

  10. Van Jaarsveld JGS, Van Deventer JSJ, Lorenzen L (1997) Miner Eng 10:659

    Article  Google Scholar 

  11. Giessen BC, Gordon GE (1968) Science 159:973

    Article  CAS  Google Scholar 

  12. Cheetham AK, Mellot CF (1997) Chem. Mater. 9:2269

    Article  CAS  Google Scholar 

  13. Morón MC (2000) J Mater Chem 10:2617

    Article  Google Scholar 

  14. Walton RI, O’Hare D (2000) Chem Commun 2283

  15. He H, Barnes P, Munn J, Turrillas X, Klinowski J (1992) Chem Phys Lett 196:267

    Article  CAS  Google Scholar 

  16. Evans JSO, Francis RJ, O’Hare D, Price SJ, Clark SM, Flaherty J, Gordon J, Nield A, Tang CC (1995) Rev Sci Instrum 66:2442

    Article  CAS  Google Scholar 

  17. Walton RI, Millange F, O’Hare D, Davies AT, Sankar G, Catlow CRA (2001) J Phys Chem B 105:83

    Article  CAS  Google Scholar 

  18. Thomlinson W, Chapman D, Gmür N, Lazarz N (1988) Nucl Instr Meth Phys Res A 266:226

    Article  Google Scholar 

  19. Decker G (1990) Nucl Instr Meth Phys Res A 291:357

    Article  Google Scholar 

  20. Swier S, Van Assche G, Van Hemelrijck A, Rahier H, Verdonck E, Van Mele B (1998) J Therm Anal 54:585

    Article  CAS  Google Scholar 

  21. Palomo A, Alonso S, Fernández-Jiménez A, Sobrados I, Sanz J (2004) J Am Ceram Soc 87:1141

    Article  CAS  Google Scholar 

  22. Fernández-Jiménez A, Palomo A (2005) Micropor Mesopor Mater 86:207

    Article  CAS  Google Scholar 

  23. Petkov V, Billinge SJL, Shastri SD, Himmel B (2000) Phys Rev Lett 85:3436

    Article  CAS  Google Scholar 

  24. Rocha J, Klinowski J (1990) Angew Chem Int Ed Engl 29:553

    Article  Google Scholar 

  25. Swaddle TW (2001) Coord Chem Rev 665:219

    Google Scholar 

  26. Duxson P, Lukey GC, Separovic F, Van Deventer JSJ (2005) Ind Eng Chem Res 44:832

    Article  CAS  Google Scholar 

  27. Barbosa VFF, Mackenzie KJD, Thaumaturgo C (2000) Int J Inorg Mater 2:309

    Article  CAS  Google Scholar 

  28. Duxson P, Provis JL, Lukey GC, Separovic F, Van Deventer JSJ (2005) Langmuir 21:3028

    Article  CAS  Google Scholar 

  29. Kubicki JD, Sykes D (1995) Geochim Cosmochim Acta 59:4791

    Article  CAS  Google Scholar 

  30. Pereira JCG, Catlow CRA, Price GD (1999) J Phys Chem A 103:3252

    Article  CAS  Google Scholar 

  31. Rahier H, Simons W, Van Mele B, Biesemans M (1997) J Mater Sci 32:2237

    Article  CAS  Google Scholar 

  32. Van Jaarsveld JGS, Van Deventer JSJ (1999) Ind Eng Chem Res 38:3932

    Article  CAS  Google Scholar 

  33. Rahier H, Denayer JF, Van Mele B (2003) J Mater Sci 38:3131

    Article  CAS  Google Scholar 

  34. Duxson P, Provis JL, Lukey GC, Mallicoat SW, Kriven WM, Van Deventer JSJ (2005) Colloid Surf A 269:47

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The experimental portion of this work was carried out on beamline X17C at the National Synchrotron Light Source, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy under Contract No. DE AC02-98CH10886. Valuable technical assistance from Dr. Jingzhu Hu is gratefully acknowledged. This work was funded through the Particulate Fluids Processing Centre, a Special Research Centre of the Australian Research Council, and by an Australian-American Fulbright Postgraduate Scholarship awarded to JLP and hosted by the University of Illinois at Urbana-Champaign and the University of Delaware.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jannie S. J. van Deventer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Provis, J.L., van Deventer, J.S.J. Direct measurement of the kinetics of geopolymerisation by in-situ energy dispersive X-ray diffractometry. J Mater Sci 42, 2974–2981 (2007). https://doi.org/10.1007/s10853-006-0548-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0548-z

Keywords

Navigation