Skip to main content

Advertisement

Log in

Designing Visual Languages for Description Logics

  • Published:
Journal of Logic, Language and Information Aims and scope Submit manuscript

Abstract

Semantic networks were developed in cognitive science and artificial intelligence studies as graphical knowledge representation and inference tools emulating human thought processes. Formal analysis of the representation and inference capabilities of the networks modeled them as subsets of standard first-order logic (FOL), restricted in the operations allowed in order to ensure the tractability that seemed to characterize human reasoning capabilities. The graphical network representations were modeled as providing a visual language for the logic. Sub-sets of FOL targeted on knowledge representation came to be called description logics, and research on these logics has focused on issues of tractability of subsets with differing representation capabilities, and on the implementation of practical inference systems achieving the best possible performance. Semantic network research has kept pace with these developments, providing visual languages for knowledge entry, editing, and presenting the results of inference, that translate unambiguously to the underlying description logics. This paper discusses the design issues for such semantic network formalisms, and illustrates them through detailed examples of significant generic knowledge structures analyzed in the literature, including determinables, contrast sets, genus/differentiae, taxonomies, faceted taxonomies, cluster concepts, family resemblances, graded concepts, frames, definitions, rules, rules with exceptions, essence and state assertions, opposites and contraries, relevance, and so on. Such examples provide important test material for any visual language formalism for logic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andersen H. (2000) Kuhn’s account of family resemblance: A solution to the problem of wide-open texture. Erkenntnis, 52: 313–337. doi:10.1023/A:1005546300818

    Article  Google Scholar 

  • Andersen H., Barker P., Chen X. (2006) The cognitive structure of scientific revolutions. Cambridge University Press, Cambridge

    Google Scholar 

  • Asuncion, A., & Newman, D. J. (2007). UCI machine learning repository. Irvine, CA: University of California, School of Information and Computer Science. http://www.ics.uci.edu/~mlearn/MLRepository.html.

  • Baader F., Sattler U. (2003) Description logics with aggregates and concrete domains. Information Systems, 28: 979–1004. doi:10.1016/S0306-4379(03)00003-6

    Article  Google Scholar 

  • Barsalou L.W. (1992) Frames, concepts and conceptual fields. In: Lehrer A., Kittay E.F. (eds) Frames, fields, and contrasts: New essays in semantic and lexical organization. N.J: L. Erlbaum, Hillsdale, pp 21–74

    Google Scholar 

  • Bauer M.I., Johnson-Laird P.N. (1993) How diagrams can improve reasoning. Psychological Science, 4: 372–378. doi:10.1111/j.1467-9280.1993.tb00584.x

    Article  Google Scholar 

  • Baumgartner P., Tinelli C. (2008) The model evolution calculus as a first-order DPLL method. Artificial Intelligence, 172: 591–632. doi:10.1016/j.artint.2007.09.005

    Article  Google Scholar 

  • Bennett M.R., Hacker P.M.S. (2003) Philosophical foundations of neuroscience. Blackwell, Malden, MA

    Google Scholar 

  • Berlin B., Breedlove D.E., Raven P.H. (1968) Covert categories and folk taxonomies. American Anthropologist, 70: 290–299. doi:10.1525/aa.1968.70.2.02a00050

    Article  Google Scholar 

  • Bertin J. (1983) Semiology of graphics. University of Wisconsin Press, Madison, Wis

    Google Scholar 

  • Besnard P. (1989) An introduction to default logic. Springer, Berlin

    Google Scholar 

  • Boër S.E. (1974) Cluster-concepts and sufficiency definitions. Philosophical Studies, 26: 119–125. doi:10.1007/BF00355264

    Article  Google Scholar 

  • Borgida A., Brachman R.J., McGuinness D.L., Resnick L.A. (1989) CLASSIC: A structural data model for objects. SIGMOD Record, 18: 58–67. doi:10.1145/66926.66932

    Article  Google Scholar 

  • Brachman R.J. (1977) What’s in a concept: Structural foundations for semantic networks. International Journal of Man-Machine Studies, 9: 127–152. doi:10.1016/S0020-7373(77)80017-5

    Article  Google Scholar 

  • Brachman, R. J., & Levesque, H. J. (1984). The tractability of subsumption in frame-based description languages. In Proc. of the 4th National Conference on Artificial Intelligence (AAAI-84) (pp. 34–37).

  • Broughton V. (2006) The need for a faceted classification as the basis of all methods of information retrieval. Aslib Proceedings: New Information Perspectives, 58(49–72): 58, 49–72

    Google Scholar 

  • Carnap R. (1950) Logical foundations of probability. University of Chicago Press, Chicago

    Google Scholar 

  • Cendrowska J. (1987) An algorithm for inducing modular rules. International Journal of Man-Machine Studies, 27: 349–370. doi:10.1016/S0020-7373(87)80003-2

    Article  Google Scholar 

  • Charniak E., McDermott D.V. (1986) Introduction to artificial intelligence. Addison-Wesley, Reading

    Google Scholar 

  • Clark, P., Hayes, P., Reichherzer, T., Thompson, J., Barker, K., Porter, B., Chaudhri, V., Rodriguez, A., Thomere, J., & Mishra, S. (2001). Knowledge entry as the graphical assembly of components. In Proceedings of the International Conference on Knowledge Capture (pp. 22–29).

  • Conklin C.O. (1969) Lexicographical treatment of folk taxonomies. In: Tyler S.A. (eds) Cognitive anthropology. Holt, New York, pp 28–41

    Google Scholar 

  • Cook, S. A. (1971). The complexity of theorem-proving procedures. In Proceedings of the Third Annual ACM Symposium on Theory of Computing (pp. 151–158).

  • Cook S.A. (1983) An overview of computational complexity. Communications of the ACM, 26: 401–408. doi:10.1145/358141.358144

    Google Scholar 

  • Cooper D.E. (1972) Definitions and clusters. Mind, 81: 495–503. doi:10.1093/mind/LXXXI.324.495

    Article  Google Scholar 

  • Davis M., Logemann G., Loveland D. (1962) A machine program for theorem proving. Communications of the ACM, 5: 394–397. doi:10.1145/368273.368557

    Article  Google Scholar 

  • Donini F.M. (2003) Complexity of reasoning. In: Baader F., Calvanese D., McGuinness D., Nardi D., Patel-Schneider P. (eds) The description logic handbook. Cambridge University Press, Cambridge, pp 96–136

    Google Scholar 

  • Eisenstadt M., Domingue J., Rajan T., Motta E. (1990) Visual knowledge engineering. Software Engineering. IEEE Transactions on, 16: 1164–1177

    Article  Google Scholar 

  • Ernst N.A., Storey M.A., Allen P. (2005) Cognitive support for ontology modeling. International Journal of Human-Computer Studies, 62: 553–577. doi:10.1016/j.ijhcs.2005.02.006

    Article  Google Scholar 

  • Fodor J.A., Garrett M.F., Walker E.C., Parkes C.H. (1980) Against definitions. Cognition, 8: 263–267. doi:10.1016/0010-0277(80)90008-6

    Article  Google Scholar 

  • Fox, P., McGuinness, D., Raskin, R., & Sinha, K. (2007). A volcano erupts: semantically mediated integration of heterogeneous volcanic and atmospheric data. Proceedings of the ACM First Workshop on CyberInfrastructure: Information Management in eScience (pp. 1–6).

  • Frake C.O. (1969) The ethnographic study of cognitive systems. In: Tyler S.A. (eds) Cognitive anthropology. Holt, New York, pp 28–41

    Google Scholar 

  • Fricke, M. (2003). What are the advantages of Hyperproof-like reasoning systems? British Society Philosophy Science.

  • Funkhouser E. (2006) The determinable-determinate relation. Nous (Detroit, Mich.), 40: 548–569. doi:10.1111/j.1468-0068.2006.00623.x

    Google Scholar 

  • Gaines, B. R. (1991a). Integrating rules in term subsumption knowledge representation servers. In AAAI’91: Proceedings of the Ninth National Conference on Artificial Intelligence (pp. 458–463). Menlo Park, CA: AAAI Press/MIT Press.

  • Gaines, B. R. (1991b). An interactive visual language for term subsumption visual languages. In IJCAI’91: Proceedings of the Twelfth International Joint Conference on Artificial Intelligence (pp. 817–823). San Mateo, CA: Morgan Kaufmann.

  • Gaines, B. R. (1993). A class library implementation of a principled open architecture knowledge representation server with plug-in data types. In IJCAI’93: Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence (pp. 504–509). San Mateo, CA: Morgan Kaufmann.

  • Gaines B.R. (1994) A situated classification solution of a resource allocation task represented in a visual language. International Journal of Human-Computer Studies, 40: 243–271. doi:10.1006/ijhc.1994.1012

    Article  Google Scholar 

  • Gaines B.R. (1996) Transforming rules and trees into comprehensible knowledge structures. In: Fayyad U.M., Piatetsky-Shapiro G., Smyth P., Uthurusamy R. (eds) Knowledge discovery in Databases II. AAAI/MIT Press, Cambridge MA, pp 205–226

    Google Scholar 

  • Gaines B.R. (2003) Organizational knowledge acquisition. In: Holsapple C.W. (eds) Handbook on knowledge management: 1. Springer, Berlin, pp 317–347

    Google Scholar 

  • Gaines, B. R. (2004). Understanding ontologies in scholarly disciplines. In V. Haarslev, & R. Möller (Eds.), Proceedings 2004 International Workshop on Description Logics, DL2004 CEUR-Workshop Proceedings, Whistler, BC. http://CEUR-WS.org/.

  • Gaines B.R., Linster M. (1990) Integrating a knowledge acquisition tool, an expert system shell and a hypermedia system. International Journal of Expert Systems Research and Applications, 3: 105–129

    Google Scholar 

  • Gaines B.R., Shaw M.L.G. (1993) Eliciting knowledge and transferring it effectively to a knowledge-based systems. IEEE Transactions on Knowledge and Data Engineering, 5: 4–14 doi:10.1109/69.204087

    Article  Google Scholar 

  • Gaines B.R., Shaw M.L.G. (1995) Concept maps as hypermedia components. International Journal of Human-Computer Studies, 43: 323–361. doi:10.1006/ijhc.1995.1049

    Article  Google Scholar 

  • Gaines B.R., Shaw M.L.G. (1999) Embedding formal knowledge models in active documents. Communications of the ACM, 42: 57–63. doi:10.1145/291469.293169

    Article  Google Scholar 

  • Gaines, B. R., & Shaw, M. L. G.(2007). Rep IV research manual. Centre for Person-Computer Studies. http://repgrid.com/RepIV/RepIVManual/.

  • Gangemi A. (2005) Ontology design patterns for semantic web content. In: Gil Y. (eds) Proceedings of the Fourth International Semantic Web Conference: LNCS 3729. Springer, Berlin, pp 262–276

    Google Scholar 

  • Gaut B. (2000) “Art” as a cluster concept. In: Carroll N. (eds) Theories of art today. University of Wisconsin Press, Madison WI, pp 25–44

    Google Scholar 

  • Gennari J.H., Musen M.A., Fergerson R.W., Grosso W.E., Crubézy M., Eriksson H., Noy N.F., Tu S.W. (2003) The evolution of Protégé: an environment for knowledge-based systems development. International Journal of Human-Computer Studies, 58: 89–123. doi:10.1016/S1071-5819(02)00127-1

    Article  Google Scholar 

  • Grau, B. C., Horrocks, I., Kazakov, Y., & Sattler, U.(2007). A logical framework for modularity of ontologies. In Proceedings International Joint Conference Artificial Intelligence, (pp. 298–304).

  • Guarino N., Welty C.A. (2004) An overview of OntoClean. In: Staab S., Studer R. (eds) Handbook on ontologies. Springer, Berlin, pp 151–171

    Google Scholar 

  • Haarslev, V., & Moller, R. (2001). RACER system description. In Proceedings of the Internainal Joint Conference on Automated Reasoning (IJCAR 2001) (Vol. 2083, pp. 701–705).

  • Hanna R. (2006) Rationality and logic. MIT Press, Cambridge, MA

    Google Scholar 

  • Hardin C.L. (1989) Could white be green?. Mind, 98: 185–288

    Google Scholar 

  • Hayes, P., Eskridge, T. C., Saavedra, R., Reichherzer, T., Mehrotra, M., & Bobrovnikoff, D. (2005). Collaborative knowledge capture in ontologies. In Proceedings of the 3rd International Conference on Knowledge Capture (pp. 99–106).

  • Hayes, P. J. (1977). In defence of logic. In Proceedings International Joint Conference Artificial Intelligence, (pp. 559–565).

  • Hayes P.J. (1979) The logic of frames. In: Metzing D. (eds) Frame conceptions and text understanding. de Gruyter, Berlin, pp 46–61

    Google Scholar 

  • Heilbron J.L., Kuhn T.S. (1969) The genesis of the Bohr atom. Historical Studies in the Physical Sciences, 1: 211–290

    Google Scholar 

  • Horn L.R. (1989) A Natural history of negation. University of Chicago Press, Chicago

    Google Scholar 

  • Horrocks, I. (1998). Using an expressive description logic: FaCT or fiction. In Proceedings of the 6th International Conference on Principles of Knowledge Representation and Reasoning (KR’98) (pp. 636–647).

  • Horrocks I., Patel-Schneider P.F., Bechhofer S., Tsarkov D. (2005) OWL rules: A proposal and prototype implementation. Web Semantics: Science. Services and Agents on the World Wide Web, 3: 23–40. doi:10.1016/j.websem.2005.05.003

    Article  Google Scholar 

  • Hyman M.D. (2007) Semantic networks: A tool for investigating conceptual change and knowledge transfer in the history of science. In: Böhme H., Rapp C., Rösler W. (eds) Übersetzung und Transformation. de Gruyter, Berlin, pp 355–367

    Google Scholar 

  • Jamnik M. (2001) Mathematical reasoning with diagrams: From intuition to automation. CSLI, Stanford, CA

    Google Scholar 

  • Johnson W.E. (1921) Logic. Cambridge University Press, Cambridge

    Google Scholar 

  • Johnson-Laird P.N., Byrne R.M.J. (1991) Deduction. Lawrence Erlbaum, Hillsdale, NJ

    Google Scholar 

  • Jonassen D.H. (2005) Tools for representing problems and the knowledge required to solve them. In: Tergan S.-O., Keller T. (eds) Knowledge and information visualization: Searching for synergies, LNCS 3426. Springer, Berlin, pp 82–94

    Google Scholar 

  • Kay P. (1975) A model-theoretic approach to folk taxonomy. Social Sciences Information. Information Sur les Sciences Sociales, 14: 151. doi:10.1177/053901847501400508

    Google Scholar 

  • Keller T., Tergan S.-O. (2005) Visualizing knowledge and information: An introduction. In: Tergan S.-O., Keller T. (eds) Knowledge and information visualization: Searching for synergies, LNCS 3426. Springer, Berlin, pp 1–23

    Google Scholar 

  • Kelly G.A. (1955) The psychology of personal constructs. Norton, New York

    Google Scholar 

  • Kelly G.A. (1970) A brief introduction to personal construct theory. In: Bannister D. (eds) Perspectives in personal construct theory. Academic Press, London, pp 1–29

    Google Scholar 

  • Khalifa M., Liu V. (2006) Semantic network discussion representation: Applicability and some potential benefits. Professional Communication. IEEE Transactions on, 49: 69–81

    Article  Google Scholar 

  • Lu, J., Li, Y., Zhou, B., & Kang, D. (2008). Reasoning within extended fuzzy description logic. Knowledge-Based Systems. doi:10.1016/j.knosys.2008.04.010.

  • Lyons J. (1968) Introduction to theoretical linguistics. Cambridge University Press, London

    Google Scholar 

  • Macnamara J. (1986) A border dispute: The place of logic in psychology. MIT Press, Cambridge, MA

    Google Scholar 

  • Mason R. (2000) Before logic. State University of New York Press, Albany

    Google Scholar 

  • McDermott D. (1987) A critique of pure reason. Computational Intelligence, 3: 151–160. doi:10.1111/j.1467-8640.1987.tb00183.x

    Article  Google Scholar 

  • Meheus J. (2000) An extremely rich paraconsistent logic and the adaptive logic based on it. In: Batens D., Mortensen C., Priest G., Van Bendegen J.-P. (eds) Frontiers of paraconsistent Logic. Research Studies Press, Baldock, pp 189–201

    Google Scholar 

  • Meheus J. (2003) Inconsistencies and the dynamics of science. Logic and Logical Philosophy, 11: 129–148

    Google Scholar 

  • Minsky, M. (1974). A framework for representing knowledge. MIT-AI Laboratory Memo 306, Boston.

  • Mumford S. (1998) Dispositions. Oxford University Press, Oxford

    Google Scholar 

  • Novak, J. D. (1998). Learning, creating, and using knowledge : Concept maps as facilitative tools in schools and corporations. Mahwah: L. Erlbaum Associates.

  • Parsia, B., & Sirin, E. (2004). Pellet: An OWL DL Reasoner. In Proceedings of the International Workshop on Description Logics Vol. 104.

  • Pearsall N.R., Skipper J.E.J., Mintzes J.J. (1997) Knowledge restructuring in the life sciences: A longitudinal study of conceptual change in biology. Science Education, 81: 193–215

    Article  Google Scholar 

  • Perini L. (2005) The truth in pictures. Philosophy of Science, 72: 262–285. doi:10.1086/426852

    Article  Google Scholar 

  • Pitt D. (1999) In defense of definitions. Philosophical Psychology, 12: 139–156. doi:10.1080/095150899105846

    Article  Google Scholar 

  • Pothos E.M., Hahn U. (2000) So concepts aren’t definitions, but do they have necessary or sufficient features. The British Journal of Psychology, 91: 439–450. doi:10.1348/000712600161925

    Article  Google Scholar 

  • Quillian M.R. (1967) Word concepts: A theory and simulation of some basic semantic capabilities. Behavioral Science, 12: 410–430. doi:10.1002/bs.3830120511

    Article  Google Scholar 

  • Revlis R., Hayes J.R. (1972) The primacy of generalities in hypothetical reasoning. Cognitive Psychology, 3: 268–290. doi:10.1016/0010-0285(72)90008-4

    Article  Google Scholar 

  • Richens R.H. (1956) Preprogramming for mechanical translation. Machine Translation, 3: 20–25

    Google Scholar 

  • Rosch E., Lloyd B.B. (1978) Cognition and categorization. Lawrence Erlbaum, Hillsdale, NY

    Google Scholar 

  • Salmieri, G. (2007). Aristotle on the ontological basis of zoological classification. In Proceedings of Conference Nature and its Classification. Bristol: Bristol University.

  • Shapiro, S. C. (1991). Case studies of SNePS. Special Issue on Implemented Knowledge Representation and Reasoning Systems, SIGART Bulletin (pp. 128–134).

  • Sirin E., Parsia B., Grau B.C., Kalyanpur A., Katz Y. (2007) Pellet: A practical OWL-DL reasoner. Web Semantics: Science. Services and Agents on the World Wide Web, 5: 51–53. doi:10.1016/j.websem.2007.03.004

    Article  Google Scholar 

  • Sotirov V. (1999) Arithmetizations of syllogistic a la Leibniz. Journal Applied Non-Classical Logics, 9: 387–405

    Google Scholar 

  • Sowa J.F. (2000) Knowledge representation: Logical, philosophical, and computational foundations. Brooks/Cole, Pacific Grove

    Google Scholar 

  • Stenning K. (2002) Seeing reason: Image and language in learning to think. Oxford University Press, Oxford

    Google Scholar 

  • Weitz M. (1977) The opening mind: A philosophical study of humanistic concepts. University of Chicago Press, Chicago

    Google Scholar 

  • Williams L.V. (1983) Teaching for the two-sided mind: A guide to right brain/left brain education. Prentice-Hall, Englewood Cliffs, N.J

    Google Scholar 

  • Woods W.A. (1975) What’s in a link. In: Bobrow D.G., Collins A. (eds) Representation and understanding. Academic Press, New York, pp 35–82

    Google Scholar 

  • Zalta E.N. (1988) Intensional logic and the metaphysics of intentionality. MIT Press, Cambridge, MA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian R. Gaines.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaines, B.R. Designing Visual Languages for Description Logics. J of Log Lang and Inf 18, 217–250 (2009). https://doi.org/10.1007/s10849-008-9078-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10849-008-9078-1

Keywords

Navigation