Skip to main content
Log in

Influence of different techniques on formulation and comparative characterization of inclusion complexes of ASA with β-cyclodextrin and inclusion complexes of ASA with PMDA cross-linked β-cyclodextrin nanosponges

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Acetyl salicylic acid (ASA), a non-steroidal anti-inflammatory drug, was formulated into inclusion complexes by grinding and precipitation with β-cyclodextrin and freeze drying with pyromellitic dianhydride (PMDA) cross-linked β-cyclodextrin nanosponges. Particle size, zeta potential, encapsulation efficiency, accelerated stability study, in vitro and in vivo release studies were used as characterization parameters. TEM studies showed that the particle sizes of different inclusion complexes of ASA have diameters ranging from 40.12 ± 8.79 to 59.53 ± 15.55 nm. It also revealed the regular spherical shape and sizes of complexes that are even unaffected after drug encapsulation. Zeta potential was sufficiently high to obtain a stable colloidal formulation. The in vitro and in vivo studies indicated a slow and prolonged ASA release from PMDA cross-linked β-cyclodextrin nanosponges over a long period. XRPD, DSC and FTIR studies confirmed the interactions of ASA with nanosponges. XRPD showed the crystalline nature of ASA decreased after encapsulation. These results indicate that ASA nanosponges formulation can be used for oral delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Torne, S., Ansari, A., Vavia, R., Trotta, F., Cavalli, R.: Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded nanosponges. Drug Deliv. 17, 419–442 (2010)

    Article  CAS  Google Scholar 

  2. Swaminathan, S., Cavalli, R., Trotta, F., Ferruti, P., Ranucci, E., Gerges, I., Manfredi, A., Marinotto, D., Vavia, P.: In vitro release modulation and conformational stabilization of a model protein using swellable polyamidoamine nanosponges of β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem 68, 183–191 (2010)

    Article  CAS  Google Scholar 

  3. Ansari, K., Vavia, P., Trotta, F., Cavalli, R.: Cyclodextrin-based nanosponges for delivery of resveratrol: In vitro characterisation, stability, cytotoxicity and permeation study. AAPS PharmSciTech 12, 1 (2011)

    Article  Google Scholar 

  4. Cavalli, R., Trotta, F., Tumiatti, W.: Cyclodextrin-based nanosponges for drug delivery. J. Incl. Phenom. Macrocycl. Chem. 56, 209–213 (2006)

    Article  CAS  Google Scholar 

  5. Swaminathan, S., Pastero, L., Serpe, L., Trotta, F., Vavia, P., Aquilano, D., Trotta, M., Zara, G., Cavalli, R.: Cyclodextrin-based nanosponges encapsulating camptothecin: Physicochemical characterization, stability and cytotoxicity. Eur. J. Pharm. Biopharm. 74, 193–201 (2010)

    Article  CAS  Google Scholar 

  6. Patel, D., Hesse, A., Ogunbona, A., Notarianni, L., Bennett, P.: Metabolism of aspirin after therapeutic and toxic doses. Hum. Exp. Toxicol. 9, 131–136 (1990)

    Article  CAS  Google Scholar 

  7. Vane, J., Bottin, R.: The mechanism of action of aspirin. Thromb. Res. 110, 255–258 (2003)

    Article  CAS  Google Scholar 

  8. El-Gendy, G., Terada, K., Yamamoto, K., Nakai, Y.: Molecular behavior, dissolution characteristics ‘and chemical stability of aspirin in the ground mixture and in the inclusion complex with di-0-methyl-/3-cyclodextrin. Int. J. Pharm. 31, 25–31 (1986)

    Article  CAS  Google Scholar 

  9. Szejtli, J.: Cyclodextrin technology, p. 280. Kluwer, Dordrecht (1988)

    Google Scholar 

  10. Mannila, J., Jarvinen, T., Jarvinen, K., Jarho, P.: Precipitation complexation method produces cannabidiol/b-cyclodextrin inclusion complex suitable for sublingual administration of cannabidio. J. Pharm. Sci. 96, 312–319 (2007)

    Article  CAS  Google Scholar 

  11. Trotta, F., Tumiatti, W., Vallero, R.: Italian Patent No. MI2004 A000614

  12. Mele, A., Castiglione, F., Malpezzi, L., Ganazzoli, F., Raffaini, G., Trotta, F., Rossi, B., Fontana, A., Giunchi, G.: HR MAS NMR, powder XRD and Raman spectroscopy study of inclusion phenomena in β-CD nanosponges. J. Incl. Phenom. Macrocycl. Chem. 69, 403–409 (2011)

    Article  CAS  Google Scholar 

  13. Shende, P., Gaud, R.: Formulation and comparative characterization of chitosan, gelatin, and chitosan–gelatin-Coated Liposomes of CPT-11–HCl. Drug Dev. Ind. Pharm. 35, 612–618 (2009)

    Article  CAS  Google Scholar 

  14. http://www.ich.org/

  15. Organization of Economic Co-operation Development: The OECD guidelines for testing of chemicals, 423. Acute oral toxicity test, Paris (2001)

  16. Kulkarni, Y., Gokhale, S., Veeranjaneyulu, A., Surana, S., Tatiya, A.: Effect of Persea macrantha against acute inflammation and adjuvant-induced arthritis in rats. Pharm Biol. 47, 304–308 (2009)

    Article  Google Scholar 

  17. Das, S., Banerjee, R., Bellar, J.: Aspirin loaded albumin nanoparticles by coacervation: implications in drug delivery. Trends Biomater. Artif. Organs 18, 203–212 (2005)

    Google Scholar 

  18. Shekh, I., Gupta, V., Jain, A., Gupta, N.: Preparation and characterisation of B cyclodextrin aspirin inclusion complex. Int. J. Pharm. Life Sci. 2, 704–710 (2011)

    CAS  Google Scholar 

  19. Nishioka, F., Nakanishi, I., Fujiwara, T., Tomita, K.: The crystal and molecular structure of the β-cyclodextrin inclusion complex with aspirin and salicylic acid. J. Incl. Phenom. Macrocycl. Chem. 2, 701–714 (1984)

    Article  CAS  Google Scholar 

  20. Loftsson, T., Ólafsdóttir, B., Friðriksdóttir, H., Jónsdóttir, S.: Cyclodextrin complexation of NSAIDSs: physicochemical characteristics. Eur. J. Pharm. Sci. 1, 95–101 (1993)

    Article  CAS  Google Scholar 

  21. Boyd, E.: The acute oral toxicity of acetylsalicylic acid. Toxicol. Appl. Pharmacol. 1, 229–239 (1959)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pravin K. Shende.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shende, P.K., Trotta, F., Gaud, R.S. et al. Influence of different techniques on formulation and comparative characterization of inclusion complexes of ASA with β-cyclodextrin and inclusion complexes of ASA with PMDA cross-linked β-cyclodextrin nanosponges. J Incl Phenom Macrocycl Chem 74, 447–454 (2012). https://doi.org/10.1007/s10847-012-0140-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-012-0140-x

Keywords

Navigation