Skip to main content
Log in

New metal organic frameworks incorporating the ditopic macrocyclic ligand dipyridyldibenzotetraaza[14]annulene

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The synthesis and crystal structures of three new metal organic frameworks of type [Zn(L-2H)] n (1), {[ZnLCl2](CH3CN)0.5(DMF)0.5(H2O)0.5} n (2) and {[CdL(DMF)(NO3)2]·DMF} n (3), all based on the dipyridyl-derivatised macrocycle, dipyridyldibenzotetraaza[14]annulene (L), are reported along with the X-ray structure of the protonated metal-free ligand as its perchlorate salt, [(HL)(ClO4)] n (4). In [Zn(L-2H)] n , the zinc ion occupies the macrocyclic cavity, being bound to the N4-donor set of the macrocyclic ring in its doubly deprotonated form. Each zinc atom is also axially bound by a pyridyl moiety from an adjacent complex, resulting in formation of an infinite one-dimensional chain of the ‘herringbone’ type in which pairs of macrocyclic complexes interact via face-to-face π–π stacking interactions. In contrast, the zinc ion in {[ZnLCl2](CH3CN)0.5(DMF)0.5(H2O)0.5} n does not occupy the macrocyclic cavity but is bound to a pyridyl nitrogen from two ligands such that it acts as a bridge between macrocyclic units and results in the generation of a one-dimensional chain. Two chloro ligands also bind to each zinc centre to yield a distorted tetrahedral coordination geometry. Offset π–π stacking occurs between adjacent chains involving alternate macrocycles in each chain, giving rise to a zig-zag arrangement. Pairs of interacting chains pass through the above-mentioned chains to generate further π–π stacking to yield an overall three-dimensional structure that contains large ellipsoidal-shaped channels. In {[CdL(DMF)(NO3)2]·DMF} n the cadmium ion again does not occupy the macrocyclic cavity but acts as a bridge between macrocycles to once again afford a linear chain structure. Each cadmium is bound to two pyridyl groups (arising from different molecules of L), two nitrato ligands and one oxygen-bound dimethylformamide molecule to yield a distorted pentagonal bipyramidal coordination geometry. The protonated ligand, [(HL)(ClO4)] n , adopts a linear chain structure in which one pyridyl group is protonated and interacts intermolecularly via a hydrogen bond with the non-protonated pyridyl group of an adjacent macrocyclic unit to yield a hydrogen-bonded linear chain structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang, J.-P., Huang, X.-C., Chen, X.-M.: Supramolecular isomerism in coordination polymers. Chem. Soc. Rev. 38, 2385–2396 (2009)

    Article  CAS  Google Scholar 

  2. Spokoyny, A.M., Kim, D., Sumrein, A., Mirkin, C.A.: Infinite coordination polymer nano- and microparticle structures. Chem. Soc. Rev. 38, 1218–1227 (2009)

    Article  CAS  Google Scholar 

  3. Morsali, A., Masoomi, M.Y.: Structures and properties of mercury(II) coordination polymers. Coord. Chem. Rev. 253, 1882–1905 (2009)

    Article  CAS  Google Scholar 

  4. Lin, W., Rieter, J.W., Taylor, K.M.L.: Modular synthesis of functional nanoscale coordination polymers. Angew. Chem. Int. Ed. 48, 650–658 (2009)

    Article  CAS  Google Scholar 

  5. Biradha, K., Ramanan, A., Vittal, J.J.: Coordination polymers versus metal-organic frameworks. Cryst. Growth Des. 9, 2969–2970 (2009)

    Article  CAS  Google Scholar 

  6. Murray, L.J., Dinca, M., Long, J.R.: Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 38, 1294–1314 (2009)

    Article  CAS  Google Scholar 

  7. Robson, R.: Design and its limitations in the construction of bi- and poly-nuclear coordination complexes and coordination polymers (aka MOFs): a personal view. Dalton Trans. 38, 5113–5131 (2008)

    Article  Google Scholar 

  8. Tanaka, D., Kitagawa, S.: Template effects in porous coordination polymers. Chem. Mater. 20, 922–931 (2008)

    Article  CAS  Google Scholar 

  9. Friese, V.A., Kurth, D.G.: Soluble dynamic coordination polymers as a paradigm for materials science. Coord. Chem. Rev. 252, 199–211 (2008)

    Article  CAS  Google Scholar 

  10. Kitagawa, S., Matsuda, R.: Chemistry of coordination space of porous coordination polymers. Coord. Chem. Rev. 251, 2490–2509 (2007)

    Article  CAS  Google Scholar 

  11. Batten, S.R., Neville, S.M., Turner, D.R.: Coordination polymers: design analysis and application. RSC Publishing, Cambridge (2009)

    Google Scholar 

  12. Czaja, A.U., Trukhan, N., Müller, U.: Chem. Soc. Rev. 38, 1284–1293 (2009)

    Article  CAS  Google Scholar 

  13. Lee, J.-Y., Farha, O.K., Roberts, J., Scheidt, K.A., Nguyen, S.-B.T., Hupp, J.T.: Metal-organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009)

    Article  CAS  Google Scholar 

  14. Biradha, K., Sarkar, M., Rajput, L.: Crystal engineering of coordination polymers using 4,4′-bipyridine as a bond between transition metal atoms. Chem. Commun. 40, 4169–4179 (2006)

    Article  Google Scholar 

  15. Suh, M.P., Moon, H.R.: Coordination polymer open frameworks constructed of macrocyclic complexes. Adv. Inorg. Chem. 59, 39–79 (2007)

    Article  CAS  Google Scholar 

  16. Abrahams, B.F., Hoskins, B.F., Robson, R.: A new type of infinite 3D polymeric network containing 4-connected, peripherally-linked metalloporphyrin building blocks. J. Am. Chem. Soc. 113, 3606–3609 (1991)

    Article  CAS  Google Scholar 

  17. Abrahams, B.F., Hoskins, B.F., Michail, D.M., Robson, R.: Assembly of porphyrin building blocks into network structures with large channels. Nature 369, 727–729 (1994)

    Article  CAS  Google Scholar 

  18. Lin, K.-J.: SMTP-1: The first functionalized metalloporphyrin molecular sieves with large channels. Angew. Chem. Int. Ed. 38, 2730 (1999)

    Article  CAS  Google Scholar 

  19. Pan, L., Noll, B.C., Wang, X.: Self-assembly of free-base tetrapyridylporphyrin units by metal ion coordination. Chem. Comm. 157–158 (1999)

  20. Sharma, C.V.K., Broker, G.A., Huddleston, J.G., Baldwin, J.W., Metzger, R.M., Rogers, R.D.: Design strategies for solid-state supramolecular arrays containing both mixed-metalated and freebase porphrins. J. Am. Chem. Soc. 121, 1137 (1999)

    Article  CAS  Google Scholar 

  21. Hagrman, D., Hagrman, P.J., Zubieta, J.: Solid-state coordination chemistry: the self-assembly of microporous organic-inorganic hybrid frameworks constructed from tetrapyridylporphyrin and bimetallic oxide chains or oxide clusters. Angew. Chem. Int. Ed. 38, 3165 (1999)

    Article  CAS  Google Scholar 

  22. Reichardt, C., Scheibelein, W.: Synthesis with aliphatic dialdehyde, XXVII. A non-template synthesis for the preparation of metal-free 1,4,8,11-tetraaza[14]annulene derivatives. Z. Naturforsch. 33, 1012–1015 (1978)

    Google Scholar 

  23. Bruker, : SMART, SAINT and XPREP. Area detector control and data integration and reduction software. Bruker Analytical X-ray Instruments Inc, Madison (1995)

    Google Scholar 

  24. Molecular Structure Corporation (1997–1998). teXsan for Windows: Single structure analysis software, MSC, 3200 Research forest drive, The Woodlands, USA

  25. Farrugia, L.J.: WinGX-32: system of programs for solving, refining and analysing single crystal X-ray diffraction data for small molecules. J. Appl. Cryst. 32, 837 (1999)

    Article  CAS  Google Scholar 

  26. Hall, S.R., du Boulay, D.J., Olthof-Hazekamp, R. (eds.): Xtal3.6 system. University of Western Australia, Perth (1999)

    Google Scholar 

  27. Sheldrick, G.M.: SADABS, empirical absorption correction program for area detector data. University of Göttingen, Germany (1996)

    Google Scholar 

  28. Altomare, A., Burla, M.C., Camalli, M., Cascarano, G.L., Giocavazzo, C., Guagliardi, A., Moliterni, A.G.C., Polidori, G., Spagna, S.: SIR97: a new tool for crystal structure determination and refinement. J. Appl. Crystallogr. 32, 115–119 (1999)

    Article  CAS  Google Scholar 

  29. Sheldrick, G.M.: SHELX97 programs for crystal structure analysis. University of Göttingen, Germany (1998)

    Google Scholar 

  30. Sheldrick, G.M.: SHELXTL-Plus Graphical interface for crystal structure solution and refinement. Bruker Analytical X-ray Instrument Inc., Maddison (1998)

    Google Scholar 

  31. Bruker, : Gemini: twinning solution program suite. Bruker Analytical X-Ray Instruments Inc., Madison (1999)

    Google Scholar 

  32. Farrugia, L.J.: WinGX suite for small-molecule single-crystal crystallography. J. Appl. Cryst. 30, 565 (1999)

    Article  Google Scholar 

Download references

Acknowledgment

We thank the Australian Research Council for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John McMurtrie.

Additional information

Andrew Parkin—deceased.

Y. Mulyana, C. J. Kepert, J. McMurtrie, P. Turner, G. Wei and J. G. Wilson dedicate this manuscript to Prof. Len Lindoy in celebration of his 75th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulyana, Y., Lindoy, L.F., Kepert, C.J. et al. New metal organic frameworks incorporating the ditopic macrocyclic ligand dipyridyldibenzotetraaza[14]annulene. J Incl Phenom Macrocycl Chem 71, 455–462 (2011). https://doi.org/10.1007/s10847-011-0007-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-011-0007-6

Keywords

Navigation