Skip to main content
Log in

Mining transposed motifs in music

  • Published:
Journal of Intelligent Information Systems Aims and scope Submit manuscript

Abstract

The discovery of frequent musical patterns (motifs) is a relevant problem in musicology. This paper introduces an unsupervised algorithm to address this problem in symbolically-represented musical melodies. Our algorithm is able to identify transposed patterns including exact matchings, i.e., null transpositions. We have tested our algorithm on a corpus of songs and the results suggest that our approach is promising, specially when dealing with songs that include non-exact repetitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules in large databases. In 20th int. conf. on very large data bases (pp. 487–499).

  • Aucouturier, J. J., & Sandler, M. (2002). Finding repeating patterns in acoustic musical signals: Applications for audio thumbnailing. In Audio engineering 22nd int. conf. on virtual, synthetic and entertainment audio (AES22) (pp. 412–421).

  • Bartsch, M., & Wakefield, G. (2005). Audio thumbnailing of popular music using chroma-based representations. IEEE Transactions on Multimedia, 7(1), 96–104.

    Article  Google Scholar 

  • Berzal, F., Fajardo, W., Jiménez, A., & Molina-Solana, M. (2009). Mining musical patterns: Identification of transposed motives. In 18th Int. symposium of foundations of intelligent systems. Lecture Notes in Computer Science, vol. 5722, pp. 271–280.

  • Böckenhauer, H. J., & Bongartz, D. (2007). Algorithmic aspects of bioinformatics. New York: Springer.

    MATH  Google Scholar 

  • Cambouropoulos, E., Crawford, T., & Iliopoulos, C. S. (2001). Pattern processing in melodic sequences: Challenges, caveats and prospects. Computers and the Humanities, 35(1), 9–21.

    Article  Google Scholar 

  • Chu, S., & Logan, B. (2002). Music summary using key phrases. In IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP-00) (pp. 749–752).

  • Dong, G., & Pei, J. (2007). Sequence data mining (advances in database systems). New York: Springer.

    Google Scholar 

  • Grachten, M., Arcos, J. L., & de Mantaras, R. L. (2004). Melodic similarity: Looking for a good abstraction level. In 5th Int. Conf. on Music Information Retrieval (ISMIR 2004) (pp. 210–215).

  • Han, J., & Kamber, M. (2005). Data mining: Concepts and techniques. Denver: Morgan Kaufmann.

    Google Scholar 

  • Hsu, J. L., Liu, C. C., & Chen, A. (1998). Efficient repeating pattern finding in music databases. In ACM 7th int. conf. on information and knowledge management (pp. 281–288).

  • Jiang, L., & Hamilton, H. J. (2003). Methods for mining frequent sequential patterns. In Advances in artificial intelligence, Lecture of Notes in Computer Sciences (Vol. 2671/2003, pp. 486–491). Berlin: Springer.

    Google Scholar 

  • Jimenez, A., Berzal, F., & Cubero, J. C. (2009). Mining induced and embedded subtrees in ordered, unordered, and partially-ordered trees. Knowledge and Information Systems, 4994/2008, 111–120. doi:10.1007/s10115-009-0213-3.

    Google Scholar 

  • Levy, M., & Sandler, M. (2008). Structural segmentation of musical audio by constrained clustering. IEEE Transactions on Audio, Speech, and Language Processing, 16(2), 318–326.

    Article  Google Scholar 

  • Meredith, D., Lemström, K., & Wiggins, G. A. (2002). Algorithms for discovering repeated patterns in multidimensional representations of polyphonic music. Journal of New Music Research, 31(4), 321–345

    Article  Google Scholar 

  • Narmour, E. (1992). The analysis and cognition of melodic complexity: The implication realization model. Chicago: Univ. Chicago Press.

    Google Scholar 

  • Paulus, J., & Klapuri, A. (2009). Music structure analysis using a probabilistic fitness measure and a greedy search algorithm. IEEE Transactions on Audio, Speech, and Language Processing, 17(6), 1159–1170.

    Article  Google Scholar 

  • Pei, J., Han, J., Asl, M. B., Pinto, H., Chen, Q., Dayal, U., et al. (2001). Prefixspan: Mining sequential patterns efficiently by prefix-projected pattern growth. In 5th int. conf. on extending database technology (pp. 215–224).

  • Pienimäki, A. (2002). Indexing music databases using automatic extraction of frequent phrases. In 3rd int. conf. on music information retrieval (pp. 25–30).

  • Rolland, P. Y. (1998). Discovering patterns in musical sequences. Journal of New Music Research, 28(4), 334–350

    Article  MathSciNet  Google Scholar 

  • Srikant, R., & Agrawal, R. (1996). Mining sequential patterns: Generalizations and performance improvements. Extending Database Technology, 1057, 3–17.

    Google Scholar 

  • Wang, W., Yang, J., & Yu, P. S. (2001). Meta-patterns: Revealing hidden periodic patterns. In IBM research report (pp. 550–557).

  • Yang, J., Wang, W., & Yu, P. S. (2001). Infominer: mining surprising periodic patterns. In 7th ACM int. conf. on knowledge discovery and data mining (SIGKDD) (pp. 395–400). New York: ACM

    Chapter  Google Scholar 

  • Zaki, M. J. (2001). Spade: an efficient algorithm for mining frequent sequences. Machine Learning, 42, 31–60.

    Article  MATH  Google Scholar 

  • Zaki, M. J. (2005a) Efficiently mining frequent embedded unordered trees. Fundamenta Informaticae, 66(1–2), 33–52

    MATH  MathSciNet  Google Scholar 

  • Zaki, M. J. (2005b). Efficiently mining frequent trees in a forest: Algorithms and applications. IEEE Transactions on Knowledge and Data Engineering, 17(8), 1021–1035.

    Article  Google Scholar 

  • Zhang, T., & Samadani, R. (2007). Automatic generation of music thumbnails. In Proceedings of the 2007 IEEE int. conf. on multimedia and expo (pp. 228–231).

Download references

Acknowledgements

F. Berzal and A. Jiménez are supported by the projects TIN2006-07262 and TIN2009-08296, whereas W. Fajardo and M. Molina-Solana are supported by the research project TIN2006-15041-C04-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aída Jiménez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiménez, A., Molina-Solana, M., Berzal, F. et al. Mining transposed motifs in music. J Intell Inf Syst 36, 99–115 (2011). https://doi.org/10.1007/s10844-010-0122-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10844-010-0122-7

Keywords

Navigation