Skip to main content
Log in

Chemical solution deposition of ferroelectric lead lanthanum zirconate titanate films on base-metal foils

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Development of electronic devices with better performance and smaller size requires the passive components to be embedded within a printed wire board (PWB). The “film-on-foil” approach is the most viable method for embedding these components within a PWB. We have deposited high-permittivity ferroelectric lead lanthanum zirconate titanate (Pb0.92La0.08Zr0.52Ti0.48O x , PLZT 8/52/48) films on base metal foils by chemical solution deposition. These prefabricated capacitor sheets can be embedded into PWBs for power electronic applications. To eliminate the parasitic effect caused by the formation of a low-permittivity interfacial oxide, a conductive buffer layer of lanthanum nickel oxide (LNO) was applied by chemical solution deposition on nickel foil before the deposition of PLZT. With a ≈0.7-μm-thick ferroelectric PLZT film grown on LNO-buffered nickel foil, we measured capacitance densities of 1.5 μF/cm2, breakdown field strength E b >1.2 MV/cm, and leakage current density of 2 × 10–8A/cm2. The dielectric relaxation current decay obeys the Curie-von Schweidler law, with exponent n = 0.85 and 0.94 for PLZT grown directly on Ni and that grown on LNO-buffered Ni foils, respectively. When compared with samples deposited directly on Ni substrate, PLZT grown on LNO buffered Ni substrates exhibit slimmer hysteresis loop and better energy storage capability. With these desirable characters, PLZT film-on-foil capacitors hold particular promise for use in high-voltage embedded passives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W. Borland, M. Doyle, L. Dellis, O. Renovales, D. Majumdar, Mater. Res. Soc. Symp. Proc. 833, 143 (2005)

    CAS  Google Scholar 

  2. D. Nelms, R. Ulrich, L. Schaper, S. Reeder, Proceedings of the 48th IEEE Electronic Components and Technology Conference, pp. 247–251, Institute of Electrical and Electronic Engineers, Piscataway, NJ (1998).

  3. W. Zhang, K. Sasaki, T. Hata, Jpn. J. Appl. Phys., Part 1. 35, 5084 (1996)

    Article  CAS  Google Scholar 

  4. Y. Zhu, J. Zhu, Y.J. Song, S.B. Desu, Appl. Phys. Lett. 73, 1958 (1998)

    Article  ADS  CAS  Google Scholar 

  5. J.T. Dawley, P.G. Clem, Appl. Phys. Lett. 81, 3028 (2002)

    Article  ADS  CAS  Google Scholar 

  6. J. Ihlefeld, B. Laughlin, A. Hunt-Lowery, W. Borland, A. Kingon, J.P. Maria, J. Electroceramics. 14, 95 (2005)

    Article  CAS  Google Scholar 

  7. T. Kim, J.N. Hanson, A. Gruverman, A.I. Kingon, S.K. Streiffer, Appl. Phys. Lett. 88, 262907 (2006)

    Article  ADS  CAS  Google Scholar 

  8. M.D. Losego, L.H. Jimison, J.F. Ihlefeld, J-P. Maria, Appl. Phys. Lett. 86, 172906 (2005)

    Article  ADS  CAS  Google Scholar 

  9. A.I. Kingon, S. Srinivasan, Nature Materials. 4, 233 (2005)

    Article  ADS  CAS  Google Scholar 

  10. S.Y. Kim, D.J. Kim, J.G. Hong, S.K. Streiffer, A.I. Kingon, J. Mater. Res. 14, 1371 (1999)

    Article  ADS  CAS  Google Scholar 

  11. Q. Zou, H.E. Ruda, B.G. Yacobi, Appl. Phys. Lett. 78, 1282 (2001)

    Article  ADS  CAS  Google Scholar 

  12. D.Y. Kaufman, S. Sabha, K. Uprety, Proceedings of the 12th US-Japan Seminar on Dielectric and Piezoelectric Ceramics, pp. 305–308, Annapolis, MD (November 2005)

  13. Y. Xu, Ferroelectroc Materials and Their Applications (Elsevier Science Publishing Company, New York, 1993), pp. 164–168

    Google Scholar 

  14. H.M. O’Bryan Jr., J. Am. Ceram. Soc. 56, 385 (1973)

    Article  Google Scholar 

  15. D. Bao, X. Yao, N. Wakiya, K. Shinozaki, N. Mizutani, J. Phys. D. Appl. Phys. 36, 1217 (2003)

    Article  ADS  CAS  Google Scholar 

  16. P. Curie, Ann. Chim. Phys. 18, 203 (1889)

    Google Scholar 

  17. E. von Schweidler, Ann. Phys. 24, 711 (1907)

    Article  Google Scholar 

  18. K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics Press, London, 1983)

    Google Scholar 

  19. M.V. Raymond, J. Chen, D.M. Smith, Integ. Ferroelectrics. 5, 73 (1994)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work funded by the U.S. Department of Energy, Office of FreedomCAR and Vehicle Technologies, under Contract DE-AC02-06CH11357. This work benefited from the use of the Electron Microscopy Center (EMC) at Argonne National Laboratory. The authors thank Dr. R. E. Koritala at EMC for her assistance with SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beihai Ma.

Additional information

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, B., Kwon, DK., Narayanan, M. et al. Chemical solution deposition of ferroelectric lead lanthanum zirconate titanate films on base-metal foils. J Electroceram 22, 383–389 (2009). https://doi.org/10.1007/s10832-007-9410-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-007-9410-1

Keywords

Navigation