Skip to main content
Log in

Effects of MnO2 addition on microstructure and electrical properties of (Bi0.5Na0.5) 0.94Ba0.06TiO3 ceramics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

In this letter, MnO2-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 (BNBT-6) lead-free piezoelectric ceramics were synthesized by solid state reaction, and the microstructure and electrical properties of the ceramics were investigated. X-ray diffraction (XRD) reveals that all specimens take on single perovskite type structure, and the diffraction peaks shift to a large angle as the MnO2 addition increases. Scanning electron microscopy shows that the grain sizes increases, and then decreases with increasing the MnO2 content. The experiment results indicate that the electrical properties of ceramics are significantly influenced by the MnO2 content, and the ceramics with homogeneous microstructure and excellent electrical properties are obtained with addition of 0.3 wt% MnO2 and sintered at 1160°C. The piezoelectric constant (d33), the electromechanical coupling factor (k p ), the dissipation factor (tan δ) and the dielectric constant (ɛ r ) reach 160 pC/N, 0.29, 0.026 and 879, respectively. These excellent properties indicate that the MnO2-doped BNBT-6 ceramics can be used for actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84–87 (2004)

    Article  CAS  Google Scholar 

  2. T. Takenaka, H. Nagata, J. Eur. Ceram. Soc. 25, 2693–2700 (2005)

    Article  CAS  Google Scholar 

  3. G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, N.N. Kraink, Sov. Phys. Solid State 2, 2651–2653 (1961)

    Google Scholar 

  4. S.C. Zhao, G.R. Li, A.L. Ding, T.B. Wang, Q.R. Yin, J. Phys. D: Appl. Phys. 39, 2277–2281 (2006)

    Article  CAS  Google Scholar 

  5. T. Takenaka, K. Maruyama, K. Sakata, Jpn. J. Appl. Phys. 30(Part 1 No. 9B) 2236–2239 (1991)

    Article  CAS  Google Scholar 

  6. D.L. West, D.A. Payne, J. Am. Ceram. Soc. 86, 192–194 (2003)

    Article  CAS  Google Scholar 

  7. X.X. Wang, X.G. Tang, H.L.W. Chan, Appl. Phys. Lett. 85, 91–93 (2004)

    Article  CAS  Google Scholar 

  8. W. Chen, Y.M. Li, Q. Xu, J. Zhou, J. Electroceram. 15, 229–235 (2005)

    Article  CAS  Google Scholar 

  9. Y.M. Li, W. Chen, J. Zhou, Q. Xu, H.J. Sun, R.X. Xu, Mater. Sci. Eng. B 112, 5–9 (2004)

    Article  CAS  Google Scholar 

  10. A. Herabut, A. Safari, J. Am. Ceram. Soc. 80, 2954–2958 (1997)

    Article  CAS  Google Scholar 

  11. J. Yoo, J. Hong, H. Lee, Y. Jeong, B. Lee, H. Song, J. Kwon, Sensors Actu. A 126, 41–47 (2006)

    Article  CAS  Google Scholar 

  12. K. Pengpat, S. Hanphimol, S. Eitssayeam, U. Intatha, G. Rujijanagul, T. Tunkasiri, J Electroceram. 16, 301–305 (2006)

    Article  CAS  Google Scholar 

  13. H.D. Li, C.D. Feng, W.L. Yao, Mater. Lett. 58, 1194–1198 (2004)

    Article  CAS  Google Scholar 

  14. B.J. Chu, G.R. Li, Q.R. Yin, W.Z. Zhang, D.R. Chen, Acta Phys. Sin. 50, 2012–2016 (2001)

    CAS  Google Scholar 

  15. X.X. Wang, H.L.W. Chan, C.L. Choy, Solid State Commun. 125, 395–399 (2003)

    Article  CAS  Google Scholar 

  16. S.J. Wu, Q. Xu, X.Z. Zhao, T. Liu, Y.M. Li, Mater. Lett. 60, 1453–1458 (2006)

    Article  CAS  Google Scholar 

  17. H. Nagata, M. Yoshida, Y.Makiuchi, T. Takenaka, Jpn. J. Appl. Phys. 42, 7401–7404 (2003)

    Article  CAS  Google Scholar 

  18. Y.M. Li, W. Chen, Q. Xu, J. Zhou, X.Y. Gu, Materials Letters 59, 1361–1364 (2005)

    Article  CAS  Google Scholar 

  19. S.J. Zhang, T.R. Shrout, H. Nagata, et al. IEEE Trans. Ultrason Ferroelectr. Freq. Control, 54, 910 (2007)

    Article  Google Scholar 

  20. T. Kamiya, T. Suzuki, T. Tsurami, Jpn. J. Appl. Phys. 31, 3058–3060 (1992)

    Article  CAS  Google Scholar 

  21. IEEE Standard on Piezoelectricity. (American National Standards Institute, Washington, DC, 1976)

  22. H.L. Du, Z.B. Pei, W.C. Zhou, F. Luo, S.B. Qu, Mater. Sci. Eng. A 421, 286–289 (2006)

    Article  CAS  Google Scholar 

  23. H. Nagata, T. Takenka, J. Eur. Ceram. Soc. 21, 1299–1320 (2001)

    Article  CAS  Google Scholar 

  24. L.S. He, C.E. Li, J. Mater. Sci. 35, 2477–2480 (2000)

    Article  CAS  Google Scholar 

  25. S.J. Zhang, R. Xia, T. R. Shrout, Mater. Sci. Eng. B129, 131 (2006)

    Article  CAS  Google Scholar 

  26. P. Roy-Chowdhury, S.B. Deshpande, J. Mater. Sci. 22, 2209–2211 (1987)

    Article  CAS  Google Scholar 

  27. W. L. Zhong, Physics of Ferroelectrics. (Science Press, 1996), pp. 274–285

  28. T. Kamiya, T. Suzuki, T. Tsurumi, M. Daimon, Jpn. J. Appl. Phys. 31, 3058–3061 (1992)

    Article  CAS  Google Scholar 

  29. Y.D. Hou, P.X. Lu, M.K. Zhu, X.M. Song, Mater. Sci. Eng. B 116, 104–108 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (Grant No. 10374064) and Education Office Science Foundation of Shannxi province, China (Grant No.03JK061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Juan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, XJ., Wang, Q. & Li, QL. Effects of MnO2 addition on microstructure and electrical properties of (Bi0.5Na0.5) 0.94Ba0.06TiO3 ceramics. J Electroceram 20, 89–94 (2008). https://doi.org/10.1007/s10832-007-9362-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-007-9362-5

Keywords

Navigation