Skip to main content

Advertisement

Log in

Recent advancements in magnetoelectric particulate and laminate composites

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Recently, the magnetoelectric (ME) effect—dielectric polarization of a material under magnetic field, or induced magnetization under an electric field—has become the focus of significant research interests. The primary requirement for the observance of said effect is the coexistence of magnetic and electric dipoles. Most of the known single phase materials suffer from the drawback that the ME effect is quite small, even at low temperatures limiting their applicability in practical devices. Better alternatives are ME composites, which have large magnitudes of the ME voltage coefficient. Composites exploit the product property of materials; where the ME effect is realized by combining magnetostrictive and piezoelectric phases that independently are not ME, but acting together (i.e., their product) result in a ME effect. In this review article, we survey recently reported results concerning ME composites, focusing on ME particulate (synthesized via a controlled precipitation technique) and laminated composites. The article also provides a survey of the compositions and magnitudes of the ME coefficients reported in the literature; a brief description of the analytical models developed to explain and predict the behavior of composites; and discuss several applications that are made possible by enhanced ME effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. J. Van Suchetelene, Philips Res. Rep. 27, 28–37 (1972)

    Google Scholar 

  2. G. Smolenskii, V.A. Ioffe, Colloque International du Magnetisme, Communication No. 71 (1958)

  3. D.N. Astrov, B.I. Al’shin, R.V. Zhorin, L.A. Drobyshev, Sov. Phys. JETP 28, 1123 (1968)

    Google Scholar 

  4. R.M. Hornreich, Solid State Commun. 7, 1081–1085 (1969)

    Article  CAS  Google Scholar 

  5. E. Fischer, G. Gorodetsky, R.M. Hornreich, Solid State Commun. 10, 1127–1132 (1972)

    Article  CAS  Google Scholar 

  6. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Nature 426, 55–58 (2003)

    Article  CAS  Google Scholar 

  7. T. Lottermoser, T. Lonkai, U. Amann, D. Hohlwein, J. Ihringer, M. Feibig, Nature 430, 541–544 (2004)

    Article  CAS  Google Scholar 

  8. M. Feibig, T. Lottermoser, D. Fröhlinch, A.V. Goltsev, R.V. Pisarev, Nature 419, 818–820 (2002)

    Article  CAS  Google Scholar 

  9. C. Ederer, N.A. Spaldin, Nature Mater 3, 849–851 (2004)

    Article  CAS  Google Scholar 

  10. N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.-W. Cheong, Nature 429, 392–395 (2004)

    Article  CAS  Google Scholar 

  11. B.B. Vanaken, T.T.M. Palstra, A. Filippetti, N. Spaldin, Nature Mater 3, 164–170 (2004)

    Article  CAS  Google Scholar 

  12. M. Fiebig, J. Phys. D, Appl. Phys. 38, R123–R152 (2005)

    Article  CAS  Google Scholar 

  13. H. Schmid, H. Reider, E. Ascher, Solid State Commun. 3, 327 (1965)

    Article  CAS  Google Scholar 

  14. S.V. Suryanarayana, Bull. Mater. Sci. 17(7), 1259–1270 (1994)

    CAS  Google Scholar 

  15. R.S. Singh, Ph. D. Thesis, Osmania University, Hyderabad, India, (1996)

  16. R.S. Singh, T. Bhimasankaram, G.S. Kumar, S.V. Suryanarayana, Solid State Commun. 91, 567 (1994)

    Article  CAS  Google Scholar 

  17. A. Srinivas, D.-W. Kim, K.S. Hong, S.V. Suryanarayana, Mater. Res. Bull. 39, 55–61 (2004)

    Article  CAS  Google Scholar 

  18. B. Ruette, S. Zvyagin, A. Pyatakov, A. Bush, J.F. Li, V. Belotelov, A. Zvezdin, D. Viehland, Phys. Rev., B. 69, 064114 (2004)

    Article  CAS  Google Scholar 

  19. A.M. Kadomtseva, A.K. Zvezdin, Y. Popov, A. Pyatakov, G. Vorob’ev, JETP Lett. 79, 571 (2004)

    Article  CAS  Google Scholar 

  20. J. Wang, J. Neaton, H. Zheng, V. Nagarajan, S. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. Schlom, U. Waghamare, N. Spaldin, K. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719 (2003)

    Article  CAS  Google Scholar 

  21. J.F. Li, J. Wang, N. Wang, B. Ruette, A. Pyatakov, M. Wuttig, R. Ramesh, A. Zvezdin, D. Viehland, Appl. Phys. Letters 84, 5261 (2004)

    Article  CAS  Google Scholar 

  22. M. Murakami, S. Fujino, S.-H. Lim, L.G. Salamanca-Riba, M. Wuttig, I. Takeuchi, B. Varughese, H. Sugaya, T. Hasegawa, S.E. Lofland, Appl. Phys. Lett. 88, 112505 (2006)

    Article  CAS  Google Scholar 

  23. X.Y. Zhang, C.W. Lai, X. Zhao, D.Y. Wang, J.Y. Dai, Appl. Phys. Lett. 87, 143102 (2005)

    Article  CAS  Google Scholar 

  24. J. van den Boomgaard, D.R. Terrell, R.A.J. Born, H.F.J.I. Giller, J. Mater. Sci. 9, 1705–1709 (1974)

    Article  Google Scholar 

  25. J. van den Boomgaard, R.A.J. Born, J. Mater. Sci. 13, 1538–1548 (1978)

    Article  Google Scholar 

  26. Y.R. Dai, P. Bao, J.S. Zhu, J.G. Wan, H.M. Shen, J.M. Liu, J. Appl. Phys. 96(10), 5687–5690 (2004)

    Article  CAS  Google Scholar 

  27. G. Srinivasan, C.P. DeVreugd, C.S. Flattery, V.M. Laletsin, N. Paddubnaya, Appl. Phys. Lett. 85(13), 2550–2552 (2004)

    Article  CAS  Google Scholar 

  28. S. Mazumder, G.S. Bhattacharya, Ceram. Int. 30, 389–392 (2004)

    Article  CAS  Google Scholar 

  29. L. Fuentes, M. GarcÍa, D. Bueno, M.E. Fuentes, A. Muñoz, Ferroelectrics 336, 81–89 (2006)

    Article  CAS  Google Scholar 

  30. T.G. Lupeiko, S.S. Lopatin, I.V. Lisnevskaya, B.I. Zvyagintsev, Inorg. Mater. 30, 1353 (1994)

    Google Scholar 

  31. R.P. Mahajan, K.K. Patankar, M.B. Kothale, S.A. Patil, Bull. Mater. Sci. 23(4), 273–279 (2000)

    Article  CAS  Google Scholar 

  32. K.K. Patankar, S.A. Patil, K.V. Sivakumar, R.P. Mahajan, Y.D. Kolekar, M.B. Kothale, Mater. Chem. Phys. 65, 97–102 (2000)

    Article  CAS  Google Scholar 

  33. J. Ryu, S. Priya, K. Uchino, D. Viehland, H. Kim, J. Korean Ceram. Soc. 39, 813–817 (2002)

    Article  CAS  Google Scholar 

  34. M.I. Bichurin, D.A. Filippov, V.M. Petrov, V.M. Laletsin, N. Paddubnaya, G. Srinivasan, Phys. Rev. B 68, 132408 (2003)

    Article  CAS  Google Scholar 

  35. M.J. Dapino, F.T. Calkins, A.B. Flatau, in 22nd Encyclopedia of Electrical and Electronics Engineering, vol. 12 (Wiley, 1999), pp. 278–305

  36. A.E. Clark, in Ferromagnetic Materials, vol. 1, ed. by E.P. Wohlfarth (North Holland, Amsterdam, 1980), pp. 531–589

    Chapter  Google Scholar 

  37. E. du Trémolet de Lacheisserie, Magnetostriction Theory and Applications of Magnetoelasticity, (CRC Press, Boca Raton, FL, 1993)

    Google Scholar 

  38. J.B. Restorff, in Encyclopedia of Applied Physics, vol. 9 (VCH, New York, 1994), pp. 229–244

  39. J. Smit, H.P.J. Wijn, in Ferrites, vol. 169 (Philips Technical Library, Eindhoven, Netherlands, 1959), pp. 230–231

  40. C.M. Srivastava, C. Srinivasan, Science of Engineering Materials (Wiley Eastern, New Delhi, 1987), pp. 301–348

    Google Scholar 

  41. APC International, Piezoelectric Ceramics, (Catalogue of Materials, Mackeyville, PA)

  42. S. Park, T. Shrout, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 44(5), 1140–1147 (1997)

    Article  Google Scholar 

  43. T. Ikeda, Fundamentals of Piezoelectricity (Oxford University Press, New York, 1990)

    Google Scholar 

  44. Landolt–Bornstein Series on Ferroelectric Oxides, III/16a, (Springer-Verlag, Berlin Heidelberg, 1999)

  45. R.P. Santoro, R.E. Newnham, Technical Report AFML TR-66-327, (Air Force Materials Lab, OH) 1966

  46. A.V. Shubnikov, Symmetry and Antisymmetry of Finite Figures (USSR Academy of Sciences, Moscow, 1951)

    Google Scholar 

  47. R.R. Birss, Symmetry, Magnetism (North-Holland, Amsterdam, 1966)

  48. R.E. Newnham, Ferroelectrics 68, 1–32 (1986)

    CAS  Google Scholar 

  49. W.F. Brown Jr., R. Hornreich, S. Shtrikman, Phys. Rev. 168, 574 (1968)

    Article  Google Scholar 

  50. T.H. O’Dell, Phila. Mag. 8, 411 (1963)

    Article  Google Scholar 

  51. J. Echigoya, S. Hayashi, Y. Obi, J. Mater. Sci. 35, 5587–5591 (2000)

    Article  CAS  Google Scholar 

  52. W.E. Kramer, R.H. Hopkins, M.R. Daniel, J. Mater. Sci. 12, 409–414 (1977)

    Article  CAS  Google Scholar 

  53. J. Ryu, A.V. Carazo, K. Uchino, H.-E. Kim, J. Electroceram. 7, 17 (2001)

    Article  CAS  Google Scholar 

  54. J. Ryu, S. Priya, K. Uchino, J. Electroceram. 8, 107–119 (2002)

    Article  CAS  Google Scholar 

  55. M.I. Bichurin, D.A. Filippov, V.M. Petrov, V.M. Laletsin, N. Paddubnaya, G. Srinivasan, Phys. Rev. B 68, 054402 (2003)

    Article  CAS  Google Scholar 

  56. G. Srinivasan, E.T. Rasmussen, R. Hayes, Phys. Rev., B 67(1), 014418 (2003)

    Article  CAS  Google Scholar 

  57. G. Srinivasan, E. Rasmussen, B. Levin, R. Hayes, Phys. Rev., B 65, 134402 (2002)

    Article  CAS  Google Scholar 

  58. R.A. Islam, S. Priya, Jpn. J. Appl. Phys. 45(5), L128–L131 (2006)

    Article  CAS  Google Scholar 

  59. R. Islam, S. Priya, in Proceedings of 30th International Cocoa Beach Conference and Exposition on Advanced Ceramics and Composites, FL, Jan 21–26, 2006 (in press)

  60. R. Islam, S. Priya, Int. Ferroelec. (2007, in press)

  61. J. Ryu, A. Vazquez Carazo, K. Uchino, H. Kim, Jpn. J. Appl. Phys. 40, 4948–4951 (2001)

    Article  CAS  Google Scholar 

  62. U. Lalestin, N. Padubnaya, G. Srinivasan, CP. Devreugd, Appl. Phys., A Mater. Sci. Process. 78(1), 33 (2004)

    Article  CAS  Google Scholar 

  63. S.X. Dong, J. Zhai, J.-F. Li, D. Viehland, J. Appl. Phys. 88, 082907 (2006)

    Google Scholar 

  64. S.X. Dong, J.F. Li, D. Viehland, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(10), 1253–1261 (2003)

    Article  Google Scholar 

  65. S.X. Dong, J.F. Li, D. Viehland, J. Appl. Phys. 96, 3382 (2004)

    Article  CAS  Google Scholar 

  66. S.X. Dong, J. Cheng, J.F. Li, D. Viehland, Appl. Phys. Lett. 83, 4812 (2003)

    Article  CAS  Google Scholar 

  67. S.X. Dong, J.F. Li, D. Viehland, Appl. Phys. Lett. 85, 5305 (2004)

    Article  CAS  Google Scholar 

  68. S.X. Dong, Junyi Zhai, Zhengping Xing, J.F. Li, D. Viehland, Appl. Phys. Lett. 86, 102901 (2005)

    Article  CAS  Google Scholar 

  69. J. Zhai, Z. Xing, S.X. Dong, J.F. Li, D. Viehland, Appl. Phys. Lett. 88, 062510 (2006)

    Article  CAS  Google Scholar 

  70. S.X. Dong, J.F. Li, D. Viehland, Appl. Phys. Lett. 85, 2307 (2004)

    Article  CAS  Google Scholar 

  71. S.X. Dong, J.F. Li, D. Viehland, Appl. Phys. Lett. 84, 4188 (2004), Appl. Phys. Lett. 85, 3534 (2004)

    Google Scholar 

  72. S.X. Dong, J.F. Li, D. Viehland, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(7), 794–799 (2004)

    Google Scholar 

  73. S.X. Dong, J. Zhai, F. Bai, J.F. Li, D. Viehland, T.A. Lograsso, J. Appl. Phys. 97, 103902 (2005)

    Article  CAS  Google Scholar 

  74. S.X. Dong, J. Zhai, N. Wang, F. Bai, J.F. Li, D. Viehland, T.A. Lograsso, Appl. Phys. Lett. 87, 222504 (2005)

    Article  CAS  Google Scholar 

  75. S. Narendra Babu, T. Bhimasankaram, S.V. Suryanarayana, Bull. Mater. Sci. 28(5), 419–422 (2005)

    Article  Google Scholar 

  76. V.M. Laletin, N. Paddubnaya, G. Srinivasan, C.P. De Vreugd, M.I. Bichurin, V.M. Petrov, D.A. Filippov, Appl. Phys. Lett. 87, 222507 (2005)

    Article  CAS  Google Scholar 

  77. C. -W. Nan, L. Liu, N. Cai, J. Zhai, Y. Ye, Y.H. Lin, L J. Dong, C.X. Xiong, Appl. Phys. Lett. 81, 3831 (2002)

    Article  CAS  Google Scholar 

  78. N. Cai, J. Zhai, C.W. Nan, Y. Lin, Z. Shi, Phys. Rev. B 68, 224103 (2003)

    Article  CAS  Google Scholar 

  79. Z. Shi, C. -W. Nan, J. M. Liu, D.A. Filippov, M.I. Bichurin, Phys. Rev., B 70, 134417 (2004)

    Article  CAS  Google Scholar 

  80. S.X. Dong, J. Zhai, F. Bai, J.F. Li, D. Viehland, Appl. Phys. Lett. 87, 052502 (2005)

    Google Scholar 

  81. S.X. Dong, J.F. Li, D. Viehland, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(10), 1236–1239 (2003)

    Article  Google Scholar 

  82. S.X. Dong, J.-F. Li, D. Viehland, J. Mater. Sci. 41, 97–106 (2006)

    Article  CAS  Google Scholar 

  83. B.O’Handley, J.K. Huang, Enhanced Performance is Piezo-based Energy Harvesters. Presented at UTA Workshop on Piezoelectric Energy Harvesting, The University of Texas Arlington, TX, Jan. 27, 2006

  84. M.D. Mermelstein, A. Dandrige, Appl. Phys. Lett. 51(7), 545–547 (1987)

    Article  Google Scholar 

  85. T. Ueno, T. Higuchi, IEEE Trans. Magn. 41(10), 3670–3672 (2005)

    Article  Google Scholar 

  86. E. Quandt, S. Stein, M. Wuttig, IEEE Trans. Magn. 41(10), 3667–3669 (2005)

    Article  CAS  Google Scholar 

  87. G. Srinivasan, A.S. Tatarenko, M.I. Bichurin, Electron. Lett. 41(10), 596–598 (2005)

    Article  CAS  Google Scholar 

  88. Y.K. Fetisov, G. Srinivasan, Electron. Lett. 41(19), 1066–1067 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors (S. Priya and R. A. Islam) would like to acknowledge the support from DOE and Texas Higher Education Coordinating Board through grant number’s DE-FG02-06ER46288 and 003656-0010-2006 respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashank Priya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Priya, S., Islam, R., Dong, S. et al. Recent advancements in magnetoelectric particulate and laminate composites. J Electroceram 19, 149–166 (2007). https://doi.org/10.1007/s10832-007-9042-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-007-9042-5

Keywords

Navigation