Skip to main content
Log in

Enhanced ionic conductivity in PEO-LiClO4 hybrid electrolytes by structural modification

  • 3. Nanomaterials and synthesis
  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Poly(ethylene oxide)-LiClO4-TiO2 organic-inorganic hybrids were synthesized for Li-polymer battery electrolytes using sol-gel processing. The hybrids containing TiO2 component showed the uniform film formation and also increased ionic conductivity. The hybrid films containing 10 wt% TiO2 showed the smooth surface morphologies and also the highest ionic conductivity. The molecular-level hybrid formation between PEO and TiO2 components was identified using FTIR analyses. The hybrids containing TiO2-Al2O3 mixtures showed the enhanced ionic conductivity compared to those containing only TiO2 most probably due to the Lewis acidic group formation at the surface of Al2O3 components. The PEO-LiClO4-TiO2-Al2O3 hybrids showed high stability both in ionic conductivity and crystallinity. By the sol-gel processing two inorganic components were successfully introduced in the PEO matrix and high-performance solid electrolytes were achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H.J. Bergveld, W.S. Kruijt, and P.H.L. Notten, J. Power Sources, 77, 143 (1999).

    Article  CAS  Google Scholar 

  2. P. Kritzer, J. Power Sources, 137, 317 (2004).

    Article  CAS  Google Scholar 

  3. J.M. Tarascon and M. Armand, Nature, 414, 359 (2001).

    Article  CAS  Google Scholar 

  4. B. Scrosati, F. Croce, and S. Panero, J. Power Sources, 100, 93 (2001).

    Article  CAS  Google Scholar 

  5. G.B. Appetecchi and B. Scrosati, Electrochim. Acta., 43, 1105 (1998).

    Article  CAS  Google Scholar 

  6. G. Venugopal, J. Moore, J. Howard, and S. Pendalwar, J. Power Sources, 77, 34 (1999).

    Article  CAS  Google Scholar 

  7. F. Croce, G.B. Appetecchi, L. Persi, and B. Scrosati, Nature, 374, 456 (1998).

    Google Scholar 

  8. G.B. Appetecchi, F. Croce, F. Ronci, L. Persi, and B. Scrosati, Electrochim. Acta., 45, 1481 (2000).

    Article  CAS  Google Scholar 

  9. B. Scrosati, F. Croce, and L. Persi, J. Electrochem. Soc., 147, 1718 (2000).

    Article  CAS  Google Scholar 

  10. F. Croce, F. Capuano, A. Selvaggi, and B.S. Scibona, J. Power Sources, 32, 381 (1990).

    Article  CAS  Google Scholar 

  11. B.K. Choi, Y.W. Kim, and K.H. Shin, J. Power Sources, 68, 357 (1997).

    Article  CAS  Google Scholar 

  12. W. Wieczorek, A. Zalewska, D. Raducha, Z. Florjanczyk, and J. R. Stevens, J. Phys. Chem., B 102, 352 (1998).

    Google Scholar 

  13. A.S. Best, J. Adebahr, P. Jacobsson, D.R. MacFarlane, and M. Forsyth, Macromolecules, 34, 4549 (2001).

    Article  CAS  Google Scholar 

  14. J. Zhou and P.S. Fedkiw, Solid State Ionics, 166, 275 (2004).

    Article  CAS  Google Scholar 

  15. S. H. Chung, Y. Wang, L. Persi, F. Croce, S.G. Greenbaum, B. Scrosati, and E. Plichta, J. Power Sources, 97–98, 644 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Mo Sung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JK., Lee, YJ., Chae, WS. et al. Enhanced ionic conductivity in PEO-LiClO4 hybrid electrolytes by structural modification. J Electroceram 17, 941–944 (2006). https://doi.org/10.1007/s10832-006-7672-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-006-7672-7

Keywords

Navigation