Skip to main content
Log in

Modelling surface effects in nano wire optoelectronic devices

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Recent research on optoelectronic devices focuses on nano structuring which is expected to improve the performance and reduce the production costs of light emitting diodes for lighting purposes and solar cells, for instance. Structuring on the sub-micrometer scale increases the surface with respect to the active volume so that surface effects become crucial for the device performance. In this work we demonstrate the computational modelling of nano structured optoelectronic devices to complement the experiment. The implementation of the simulation model considers surface effects in these devices using a true area box method discretization. The derived surface models are applied on the self-consistent simulation of nano wire quantum disk light emitting diodes. By the computational study we demonstrate that the surface physical effects are critical for the performance of nano-structured optoelectronic devices and that surface recombination can lead to a low efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Andreev, Z., Römer, F., Witzigmann, B.: Simulation of InGaN quantum well LEDs with reduced internal polarization. Phys. Status Solidi A 209(3), 487–490 (2012)

    Article  Google Scholar 

  2. Bank, R., Rose, D., Fichtner, W.: Numerical methods for semiconductor device simulation. IEEE Trans. Electron Devices 30(9), 1031–1041 (1983)

    Article  Google Scholar 

  3. Bank, R.E., Bürgler, J.F., Fichtner, W., Smith, R.K.: Some upwinding techniques for finite element approximations of convection-diffusion equations. Numer. Math. 58(1), 185–202 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baraff, G.: Semiclassical description of electron transport in semiconductor quantum-well devices. Phys. Rev. B 55(16), 10,745 (1997)

    Article  Google Scholar 

  5. Baur, J., Baumann, F., Peter, M., Engl, K., Zehnder, U., Off, J., Kuemmler, V., Kirsch, M., Strauss, J., Wirth, R., Streubel, K., Hahn, B.: Status of high efficiency and high power ThinGaN®-LED development. Phys. Status Solidi C 6(S2), S905–S908 (2009)

    Article  Google Scholar 

  6. Böcklin, C., Veprek, R.G., Steiger, S., Witzigmann, B.: Computational study of an InGaN/GaN nanocolumn light-emitting diode. Phys. Rev. B 81, 155,306 (2010)

    Article  Google Scholar 

  7. Borgström, M.T., Wallentin, J., Heurlin, M., Stefan, F., Wickert, P., Leene, J., Magnusson, M.H., Deppert, K., Samuelson, L.: Nanowires with promise for photovoltaics. IEEE J. Sel. Top. Quantum Electron. 17(4), 1050–1061 (2011)

    Article  Google Scholar 

  8. Bürgler, J., Bank, R., Fichtner, W., Smith, R.: A new discretization scheme for the semiconductor current continuity equations. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 8(5), 479–489 (1989)

    Article  Google Scholar 

  9. Chuang, S., Chang, C.: K⋅P method for strained wurtzite semiconductors. Phys. Rev. B 54(4), 2491–2504 (1996)

    Article  Google Scholar 

  10. Darling, R.: Defect-state occupation, Fermi-level pinning, and illumination effects on free semiconductor surfaces. Phys. Rev. B 43(5), 4071–4083 (1991)

    Article  Google Scholar 

  11. Deppner, M., Bjelica, M., Römer, F., Witzigmann, B.: Computational study of multi-color InGaN/GaN nanowire LEDs with continuously varied indium composition. In: Proceedings of SPIE, pp. 82,550G–82,550G-11 (2012)

    Google Scholar 

  12. Forniés, E., Zaldo, C., Albella, J.: Control of random texture of monocrystalline silicon cells by angle-resolved optical reflectance. Sol. Energy Mater. Sol. Cells 87(1–4), 583–593 (2005)

    Google Scholar 

  13. Garretón, G.: A hybrid approach to 2D and 3D mesh generation for semiconductor device simulation. Ph.D. Thesis, ETH Zürich (1999)

  14. Gunawan, O., Wang, K., Fallahazad, B., Zhang, Y., Tutuc, E., Guha, S.: High performance wire-array silicon solar cells (August 2010), 307–312 (2011)

  15. Guo, W., Banerjee, A., Bhattacharya, P., Ooi, B.S.: InGaN/GaN disk-in-nanowire white light emitting diodes on (001) silicon. Appl. Phys. Lett. 98(19), 193,102 (2011)

    Article  Google Scholar 

  16. Hjelle, O., Dæhlen, M.: Triangulations and Applications. Springer, Berlin (2006)

    MATH  Google Scholar 

  17. Kerkhoven, T.: On the Scharfetter-Gummel box method. Simul. Semicond. Devices Process. 5, 237–240 (1993)

    Article  Google Scholar 

  18. Kočan, M., Rizzi, A., Lüth, H., Keller, S., Mishra, U.: Surface potential at as-grown GaN(0001) MBE layers. Phys. Status Solidi B 234(3), 773–777 (2002)

    Article  Google Scholar 

  19. Luttinger, J., Kohn, W.: Motion of electrons and holes in perturbed periodic fields. Phys. Rev. 173(1950), 869 (1955)

    Article  Google Scholar 

  20. Park, S.H., Chuang, S.L.: Crystal-orientation effects on the piezoelectric field and electronic properties of strained wurtzite semiconductors. Phys. Rev. B 59(7), 4725–4737 (1999)

    Article  Google Scholar 

  21. Rafferty, C., Pinto, M., Dutton, R.: Iterative methods in semiconductor device simulation. IEEE Trans. Electron Devices 32(10), 2018–2027 (1985)

    Article  Google Scholar 

  22. Reshchikov, M.A., Sabuktagin, S., Johnstone, D.K., Morkoç, H.: Transient photovoltage in GaN as measured by atomic force microscope tip. J. Appl. Phys. 96(5), 2556 (2004)

    Article  Google Scholar 

  23. Sanford, N.A., Blanchard, P.T., Bertness, K.A., Mansfield, L., Schlager, J.B., Sanders, A.W., Roshko, A., Burton, B.B., George, S.M.: Steady-state and transient photoconductivity in c-axis GaN nanowires grown by nitrogen-plasma-assisted molecular beam epitaxy. J. Appl. Phys. 107(3), 034,318 (2010)

    Article  Google Scholar 

  24. Scharfetter, D., Gummel, H.: Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Electron Devices 16(1), 64–77 (1969)

    Article  Google Scholar 

  25. Steiger, S., Veprek, R.G., Witzigmann, B.: Unified simulation of transport and luminescence in optoelectronic nanostructures. J. Comput. Electron. 7(4), 509–520 (2008)

    Article  Google Scholar 

  26. Trellakis, A., Galick, A., Pacelli, A., Ravaioli, U.: Iteration scheme for the solution of the two-dimensional Schrödinger-Poisson equations in quantum structures. J. Appl. Phys. 81(12), 7880 (1997)

    Article  Google Scholar 

  27. Veprek, R.G., Steiger, S., Witzigmann, B.: Reliable kp band structure calculation for nanostructures using finite elements. J. Comput. Electron. 7(4), 521–529 (2008)

    Article  Google Scholar 

  28. Waag, A., Wang, X., Fündling, S., Ledig, J., Erenburg, M., Neumann, R., Al Suleiman, M., Merzsch, S., Wei, J., Li, S., Wehmann, H.H., Bergbauer, W., Straßburg, M., Trampert, A., Jahn, U., Riechert, H.: The nanorod approach: GaN NanoLEDs for solid state lighting. Phys. Status Solidi C 8(7–8), 2296–2301 (2011)

    Article  Google Scholar 

  29. Yu, S., Römer, F., Witzigmann, B.: Analysis of surface recombination in nanowire array solar cells. J. Photon. Energy 2(1), 028002 (2012)

    Google Scholar 

Download references

Acknowledgements

This work is part of the European Commission Seventh Framework Programme project SMASH. Funding under the contract CP-IP 228999-2 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedhard Römer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Römer, F., Witzigmann, B. Modelling surface effects in nano wire optoelectronic devices. J Comput Electron 11, 431–439 (2012). https://doi.org/10.1007/s10825-012-0424-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-012-0424-9

Keywords

Navigation