Skip to main content
Log in

Mesoscale modeling of phononic thermal conductivity of porous Si: interplay between porosity, morphology and surface roughness

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this work we compute the effective thermal conductivity of porous Si by means of the phonon Boltzmann transport equation. Simulations of heat transport across aligned square pores reveal that the thermal conductivity can be decreased either by increasing the pore size or decreasing the pore spacing. Furthermore, by including the surface specularity parameter we show that the roughness of the pore walls plays an important role when the pore size is comparable with the phonon mean free path, because to the increase in the surface-to-volume ratio. Thanks to these results, in qualitatively agreement with those obtained with Molecular Dynamics simulations, we gained insights into the scaling of thermal properties of porous materials and interplay between disorder at different length scales. The model, being based on a flexible multiscale finite element context, can be easily integrated with electrical transport models, in order to optimize the figure of merit ZT of thermoelectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Majumdar, A.: Enhanced: thermoelectricity in semiconductor nanostructures. Science 303, 777 (2004)

    Article  Google Scholar 

  2. Zebarjadi, M., Esfarjani, K., Dresselhaus, M.S., Ren, Z.F., Chen, G.: Perspectives on thermoelectrics: from fundamentals to device applications. Energy Environ. Sci. 5, 5147 (2011)

    Article  Google Scholar 

  3. Snyder, G.: Complex thermoelectric materials. Nat. Mater. 7, 105 (2008)

    Article  Google Scholar 

  4. Minnich, A.J., Dresselhaus, M.S., Ren, Z.F., Chen, G.: Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci. 2, 466–479 (2009)

    Article  Google Scholar 

  5. Hicks, L.D., Harman, T.C., Dresselhaus, M.S.: Use of quantum-well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials. Appl. Phys. Lett. 3230 (1993)

  6. Mahan, G.D., Sofo, J.O.: The best thermoelectric. Proc. Natl. Acad. Sci. 93, 7436 (1996)

    Article  Google Scholar 

  7. Humphrey, T.E., Linke, H.: Reversible thermoelectric nanomaterials. Phys. Rev. Lett. 94, 096601 (2005)

    Article  Google Scholar 

  8. Song, D., Chen, G.: Thermal conductivity of periodic microporous silicon films. Appl. Phys. Lett. 84(5), 687 (2004)

    Article  Google Scholar 

  9. Yu, J.-K., Mitrovic, S., Tham, D., Varghese, J., Heath, J.R.: Reduction of thermal conductivity in phononic nanomesh structures. Nat. Nanotechnol. 5, 718 (2010)

    Article  Google Scholar 

  10. Lee, J.-H., Galli, G.A., Grossman, J.C.: Nanoporous Si as an efficient thermoelectric material. Nano Lett. 8, 3750 (2008)

    Article  Google Scholar 

  11. Lee, J., Grossman, J., Reed, J.: Lattice thermal conductivity of nanoporous Si: Molecular dynamics study. Appl. Phys. Lett. 91, 223110 (2007)

    Article  Google Scholar 

  12. He, Y., Donadio, D., Lee, J.-H., Grossman, J.C., Galli, G.: Thermal transport in nanoporous silicon: interplay between disorder at mesoscopic and atomic scales. ACS Nano 5, 1839 (2011)

    Article  Google Scholar 

  13. Auf der Maur, M., Penazzi, G., Romano, G., Sacconi, F., Pecchia, A., Di Carlo, A.: The multiscale paradigm in electronic device simulation. IEEE Trans. Electron Devices 58, 1425 (2011)

    Article  Google Scholar 

  14. www.tibercad.org

  15. Sparrow, E.M., Cess, R.D.: Radiation Heat Transfer. CRC Press, Boca Raton (1978)

    Google Scholar 

  16. Hao, Q., Chen, G., Jeng, M.-S.: Frequency-dependent Monte Carlo simulations of phonon transport in two-dimensional porous silicon with aligned pores. J. Appl. Phys. 106, 114321 (2009)

    Article  Google Scholar 

  17. Majumdar, A.: Microscale heat conduction in dielectric thin films. Trans. ASME, J. Heat Transf. 115, 7 (1993)

    Article  Google Scholar 

  18. Joshi, A.A., Majumdar, A.: Transient ballistic and diffusive phonon heat transport in thin films. J. Appl. Phys. 74, 31 (1993)

    Article  Google Scholar 

  19. Chen, G.: Nanoscale Energy Transport and Conversion: A Parallel Treatment of Elections, Molecules, Phonons, and Photons. Oxford Univ. Press, London (2005)

    Google Scholar 

  20. Yang, R.G., Chen, G.: Thermal conductivity modeling of periodic two-dimensional nanocomposites. Phys. Rev. B 69, 195 (2004)

    Google Scholar 

  21. Liu, L.-C., Huang, M.-J.: Thermal conductivity modeling of micro- and nanoporous silicon. Int. J. Therm. Sci. 49(9), 1547 (2010)

    Article  Google Scholar 

  22. Chung, J.D., Kaviany, M.: Effects of phonon pore scattering and pore randomness on effective conductivity of porous silicon. Int. J. Heat Mass Transf. 43, 521 (2000)

    Article  MATH  Google Scholar 

  23. Romano, G., Di Carlo, A.: Multiscale electro-thermal modeling of nanostructured devices. IEEE Trans. Nanotechnol. 10, 1285 (2011)

    Article  Google Scholar 

  24. Romano, G., Auf der Maur, M., Pecchia, A., Di Carlo, A.: Handshaking multiscale thermal model of nanostructured devices. In: Proceedings of the 14TH International Workshop on Computational Electronics, p. 68 (2010)

    Google Scholar 

  25. Thompson, J.F., Soni, B.K., Weatherill, N.P.: Handbook of Grid Generation. CRC Press, Boca Raton (1999)

    MATH  Google Scholar 

  26. Murthy, J.Y., Mathur, S.R.: Computation of sub-micron thermal transport using an unstructured finite volume method. J. Heat Transf. 124, 1176 (2002)

    Article  Google Scholar 

  27. Murthy, J.Y., Mathur, S.R.: An improved computational procedure for sub-micron heat conduction. J. Heat Transf. 125, 904 (2003)

    Article  Google Scholar 

  28. Chen, G.: Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys. Rev. B 57, 14958 (1998)

    Article  Google Scholar 

  29. Ziman, J.M.: Electrons and Phonons. Oxford University Press, London (1985)

    Google Scholar 

  30. Soffer, S.B.: Statistical model for the size effect in electrical conduction. J. Appl. Phys. 38, 1710 (1967)

    Article  Google Scholar 

  31. Aksamija, Z., Knezevic, I.: Anisotropy and boundary scattering in the lattice thermal conductivity of silicon nanomembranes. Phys. Rev. B 82(4), 045319 (2010)

    Article  Google Scholar 

  32. Nan, C.-W., Birringer, R., Clarke, D.R., Gleiter, H.: Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81, 6692 (1997)

    Article  Google Scholar 

  33. Prasher, R.: Transverse thermal conductivity of porous materials made from aligned nano and microcylindrical pores. J. Appl. Phys. 100, 064302 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey C. Grossman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romano, G., Di Carlo, A. & Grossman, J.C. Mesoscale modeling of phononic thermal conductivity of porous Si: interplay between porosity, morphology and surface roughness. J Comput Electron 11, 8–13 (2012). https://doi.org/10.1007/s10825-012-0390-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-012-0390-2

Keywords

Navigation