Skip to main content
Log in

Analysis of field-driven clocking for molecular quantum-dot cellular automata based circuits

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Molecular quantum-dot cellular automaton (QCA) offers an alternative paradigm for computing at the nano-scale. QCA circuits require an external clock which can be generated using a network of submerged electrodes to synchronize information flow and provide the required power to drive the computation. In this paper, the effect of electrode separation and applied potential on the likelihood of different QCA cell states of molecular cells located above and in between two adjacent electrodes is analyzed. Using this analysis, estimates of operational ranges are developed for the placement, applied potential, and relative phase between adjacent clocking electrodes to ensure that only those states that are used in the computation are energetically favorable. Conclusions on the trade-off between cell size, cell-to-cell distance, and applied clocking potential are drawn and the temperature dependence of the operation of fundamental QCA building blocks is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4, 49–57 (1993)

    Article  Google Scholar 

  2. Lu, Y., Lent, C.S.: Theoretical study of molecular quantum-dot cellular automata. J. Comput. Electron. 4, 115–118 (2005)

    Article  Google Scholar 

  3. Lent, C.S., Isaksen, B., Lieberman, M.: Molecular quantum-dot cellular automata. J. Am. Chem. Soc. 125, 1056–1063 (2003)

    Article  Google Scholar 

  4. Jiao, J., Long, G.J., Grandjean, F., Beatty, A.M., Fehlner, T.P.: Building blocks for the molecular expression of quantum cellular automata. Isolation and characterization of a covalently bonded square array of two ferrocenium and two ferrocene complexes. J. Am. Chem. Soc. 125(25), 7522–7523 (2003)

    Article  Google Scholar 

  5. Lent, C.S., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron Devices 50(9), 1890–1896 (2003)

    Article  Google Scholar 

  6. Jin, Z.: Fabrication and measurement of molecular quantum cellular automata (QCA) device. Master’s Thesis, University of Notre Dame, Notre Dame, IN 46556 (2006)

  7. Li, Z., Fehlner, T.P.: Molecular QCA cells. 2. Characterization of an unsymmetrical dinuclear mixed-valence complex bound to a au surface by an organic linker. Inorg. Chem. 42(18), 5715–5721 (2003)

    Article  Google Scholar 

  8. Li, Z., Beatty, A.M., Fehlner, T.P.: Molecular QCA cells. 1. Structure and functionalization of an unsymmetrical dinuclear mixed-valence complex for surface binding. Inorg. Chem. 42(18), 5707–5714 (2003)

    Article  Google Scholar 

  9. Qi, H., Sharma, S., Li, Z., Snider, G.L., Orlov, A.O., Lent, C.S., Fehlner, T.P.: Molecular quantum cellular automata cells. Electric field driven switching of a silicon surface bound array of vertically oriented two-dot molecular quantum cellular automata. J. Am. Chem. Soc. 125(49), 15250–15259 (2003)

    Article  Google Scholar 

  10. Macucci, M., Gattobigio, M., Bonci, L., Iannaccone, G., Prins, F.E., Single, C., Wetekam, G., Kern, D.P.: A QCA cell in silicon-on-insulator technology: theory and experiment. Superlattices Microstruct. 34(3), 205–211 (2004)

    Article  Google Scholar 

  11. Orlov, A.O., Kummamuru, R.K., Ramasubramaniam, R., Lent, C.S., Berstein, G.H., Snider, G.L.: Clocked quantum-dot cellular automata shift register. Surf. Sci. 532–535, 1193–1198 (2003)

    Article  Google Scholar 

  12. Amlani, I., Orlov, A.O., Toth, G., Bernstein, G.H., Lent, C.S., Snider, G.L.: Digital logic gate using quantum-dot cellular automata. Science 284, 289–291 (1999)

    Article  Google Scholar 

  13. Amlani, I., Orlov, A.O., Snider, G.L., Lent, C.S.: Demonstration of a functional quantum-dot cellular automata cell. J. Vac. Sci. Technol. B 16, 3795–3799 (1998)

    Article  Google Scholar 

  14. Lent, C.S., Snider, G.L., Bernstein, G.H., Porod, W., Orlov, A.O., Lieberman, M., Fehlner, T., Niemier, M.T., Kogge, P.: Quantum-Dot Cellular Automata. Kluwer Academic, Dordrecht (2003)

    Google Scholar 

  15. Snider, G.L., Amlani, I., Orlov, A.O., Toth, G., Bernstein, G., Lent, C.S., Merz, J.L., Porod, W.: Quantum-dot cellular automata: line and majority gate logic. Jpn. J. Appl. Phys. 38, 7227–7229 (1999)

    Article  Google Scholar 

  16. Kummamuru, R.V., Timler, J., Toth, G., Lent, C.S., Ramasubramaniam, R., Orlov, A.O., Bernstein, G.H.: Power gain and dissipation in a quantum-dot cellular automata latch. Appl. Phys. Lett. 81, 1332–1334 (2002)

    Article  Google Scholar 

  17. Toth, G., Lent, C.S.: Quasiadiabatic switching of metal-island quantum-dot cellular automata. J. Appl. Phys. 85(5), 2977–2984 (1999)

    Article  Google Scholar 

  18. Imre, A., Csaba, G., Ji, L., Orlov, A.O., Bernstein, G.H., Porod, W.: Majority logic gate for magnetic quantum-dot cellular automata. Science 311(5758), 205–208 (2006)

    Article  Google Scholar 

  19. György, C., et al.: Nanocomputing by field-coupled nanomagnets. IEEE Trans. Nanotechnol. 1(4), 209–213 (2002)

    Article  Google Scholar 

  20. György, C., Porod, W.: Simulation of field coupled computing architectures based on magnetic dot arrays. J. Comput. Electron. 1(1), 87–91 (2002)

    Article  Google Scholar 

  21. Parish, M.C.B.: Modeling of physical constraints on bistable magnetic quantum cellular automata. Ph.D. Thesis, University of London (2003)

  22. Welland, M.E., Cowburn, R.P.: Room temperature magnetic quantum cellular automata. Science 287, 1466–1468 (2000)

    Article  Google Scholar 

  23. Bernstein, G.H., Imre, A., Metlushko, V., Ji, L., Orlov, A.O., Csaba, G., Porod, W.: Magnetic QCA systems. Microelectron. J. 36, 619–624 (2005)

    Article  Google Scholar 

  24. Haider, M., et al.: Controlled coupling and occupation of silicon atomic quantum dots at room temperature. Phys. Rev. Lett. 102, 046805 (2009)

    Article  Google Scholar 

  25. Walus, K., Jullien, G.A.: Design tools for an emerging SoC technology: quantum-dot cellular automata. Proc. IEEE 94(6), 1225–1244 (2006)

    Article  Google Scholar 

  26. Walus, K., Dysart, T., Jullien, G.A., Budiman, R.A.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)

    Article  Google Scholar 

  27. Walus, K., Budiman, R.A., Jullien, G.A.: Split current quantum dot cellular automata—modeling and simulation. IEEE Trans. Nanotechnol. 3(2), 249–255 (2004)

    Article  Google Scholar 

  28. Walus, K., Schulhof, G.: QCADesigner homepage. http://www.qcadesigner.ca/ (2001) (Online)

  29. Walus, K., Mazur, M., Schulhof, G., Jullien, G.A.: Simple 4-bit processor based on quantum-dot cellular automata (QCA). In: Proc. of Application Specific Architectures, and Processors Conference, pp. 288–293, July 2005

  30. Walus, K., Schulhof, G., Zhang, R., Wang, W., Jullien, G.A.: Circuit design based on majority gates for applications with quantum-dot cellular automata. In: Proc. of IEEE Asilomar Conference on Signals, Systems, and Computers, November 2004

  31. Walus, K., Schulhof, G., Jullien, G.A.: High level exploration of quantum-dot cellular automata (QCA). In: Proc. of IEEE Asilomar Conference on Signals, Systems, and Computers, November 2004

  32. Hennessy, K., Lent, C.S.: Clocking of molecular quantum-dot cellular automata. J. Vac. Sci. Technol. B 19(5), 1752–1755 (2001)

    Article  Google Scholar 

  33. Blair, E.P., Lent, C.S.: An architecture for molecular computing using quantum-dot cellular automata. In: Proc. of the Third IEEE Conference on Nanotechnology, pp. 402–405 (2003)

  34. Blair, E.P.: Tools for the design and simulation of clocked molecular quantum-dot cellular automata circuits. Master’s Thesis, University of Notre Dame, Notre Dame, IN 46556 (2003)

  35. Data flow in molecular QCA: Logic can “sprint,” but the memory wall can still be a “hurdle” (2005)

  36. Timler, J., Lent, C.S.: Power gain and dissipation in quantum-dot cellular automata. J. Appl. Phys. 91(2), 823–831 (2002)

    Article  Google Scholar 

  37. Lent, C., Liu, M., Lu, Y.: Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling. Nanotechnology 17(16), 4240–4251 (2006)

    Article  Google Scholar 

  38. Walus, K., Budiman, R.A., Jullien, G.A.: Impurity charging in semiconductor quantum-dot cellular automata. Nanotechnology 16(11), 2525–2529 (2005)

    Article  Google Scholar 

  39. Walus, K.: Design and simulation of quantum-dot cellular automata devices and circuits. Ph.D. Thesis, University of Alberta, September 2005

  40. Li, Z., Lieberman, M.: Axial reactivity of soluble silicon(IV) phthalo-cyanines. Inorg. Chem. 40, 932–939 (2001)

    Article  Google Scholar 

  41. Demadis, K.D., Hartshorn, C.M., Meyer, T.J.: The localized-to-de-localized transition in mixed-valence chemistry. Chem. Rev. 101, 2655–2685 (2001)

    Article  Google Scholar 

  42. Lu, Y., Liu, M., Lent, C.S.: Molecular electronics—from structure to dynamics. In Proc. of the Sixth IEEE Conference on Nanotechnolgy (2006)

  43. Lu, Y., Liu, M., Lent, C.S.: Molecular quantum-dot cellular automata: from structure to dynamics. J. Appl. Phys. 102, 034311 (2007)

    Article  Google Scholar 

  44. Lu, Y., Lent, C.: A metric for characterizing the bistability of molecular quantum-dot cellular automata. Nanotechnology 19, 155703 (2008)

    Article  Google Scholar 

  45. Lent, C.S.: Re: QCA Related Questions. E-mail to K. Walus. 11 November 2008

  46. Lent, C.S., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron. Devices 50, 1890–1896 (2003)

    Article  Google Scholar 

  47. Sadiku, M.: Elements of Electromagnetics, 3rd edn. Oxford University Press, London (1994)

    Google Scholar 

  48. Whites, K.W., Paul, C.R., Nasar, S.A.: Introduction to Electromagnetic Fields, 3rd edn. McGraw-Hill, Cambridge (1998)

    Google Scholar 

  49. Nojeh, A., Ural, A., Pease, R.F., Dai, H.: Electric-field-directed growth of carbon nanotubes in two dimensions. J. Vac. Sci. Technol. B 22(6), 3421–3425 (2004)

    Article  Google Scholar 

  50. Visconti, P., Della Torre, A., Maruccio, G., D’Amone, E., Bramanti, A., Cingolani, R., Rinaldi, R.: The fabrication of sub-10 nm planar electrodes and their use for a molecule-based transistor. Nanotechnology 15, 807–811 (2004)

    Article  Google Scholar 

  51. Liu, K., Avouris, Ph., Bucchignano, J., Martel, R., Sun, S., Michi, J.: Simple fabrication scheme for sub-10 nm electrode gaps using electron-beam lithography. Appl. Phys. Lett. 5(80), 865–867 (2002)

    Article  Google Scholar 

  52. Macucci, M., Iannaccone, G., Francaviglia, S., Pellegrini, B.: Semiclassical simulation of quantum cellular automaton circuits. Int. J. Circuit Theory Appl. 29(1), 37–47 (2001)

    Article  Google Scholar 

  53. Ungarelli, C., Francaviglia, S., Macucci, M., Iannaccone, G.: Thermal behavior of quantum cellular automaton wires. J. Appl. Phys. 87(10), 7320–7325 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Karim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karim, F., Walus, K. & Ivanov, A. Analysis of field-driven clocking for molecular quantum-dot cellular automata based circuits. J Comput Electron 9, 16–30 (2010). https://doi.org/10.1007/s10825-009-0300-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-009-0300-4

Keywords

Navigation