Skip to main content
Log in

Basis-set choice for DFT/NEGF simulations of carbon nanotubes

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We investigate the effect of the choice of the basis set on the results of ab initio (density functional theory/non-equilibrium Green’s function) calculations of the bandgap of semiconducting carbon nanotubes, and near-zero-bias conductance of metallic carbon nanotubes. Both ideal and deformed carbon nanotubes are studied, as well as nanotubes with an adsorbed biomolecule. The results show that the near-zero-bias conductance of armchair nanotubes can be calculated accurately with a minimal basis set, with the exception of the (2,2) tube, where a polarized basis set is necessary to accurately predict the metallic behaviour of this tube. For zigzag tubes, a double-zeta polarized basis set is in general required for accuracy in bandgap and near-zero-bias conductance calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shah, D., Bruque, N.A., Alam, K., Lake, R.K., Pandey, R.R.: Electronic properties of carbon nanotubes calculated from density functional theory and the empirical π-bond model. J. Comput. Electron. 6, 395–400 (2007)

    Article  Google Scholar 

  2. Yan, Q., Wu, J., Zhou, G., Duan, W., Gu, B.: Ab initio study of transport properties of multiwalled carbon nanotubes. Phys. Rev. B 72, 155425 (2005)

    Article  Google Scholar 

  3. Sun, P., Kim, H., So, H., Kong, K., Chang, H., Ryu, B., Choi, Y., Lee, J., Kim, B., Kim, J., Kim, J.: Investigation of the humidity effect on the electrical properties of single-walled carbon nanotube transistors. Appl. Phys. Lett. 87, 093101 (2005)

    Article  Google Scholar 

  4. Zeng, H., Hu, H.F., Wei, J.W., Wang, Z.Y., Wang, L., Peng, P.: Curvature effects on electronic properties of small radius nanotube. Appl. Phys. Lett. 91, 033102 (2007)

    Article  Google Scholar 

  5. Abadir, G.B., Walus, K., Pulfrey, D.L.: Comment on “Curvature effects on electronic properties of small radius nanotube”. Appl. Phys. Lett. 91, 033102 (2007). Submitted to Appl. Phys. Lett., 15th of September 2008

    Article  Google Scholar 

  6. Perdew, J.P., Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981)

    Article  Google Scholar 

  7. Atomistix v.2008.02, www.quantumwise.com

  8. Stokbro, K., Taylor, J., Brandbyge, M., Guo, H.: Ab-initio non-equilibrium Green’s function formalism for calculating electron transport in molecular devices. In: Cuniberti, G., Fagas, G., Richter, K. (eds.) Introducing Molecular Electronics. Lecture Notes in Physics, pp. 117–152. Springer, Berlin (2005)

    Google Scholar 

  9. Lindahl, E., Hess, B., van der Spoel, D.: GROMACS 3.0: A package for molecular simulation and trajectory analysis. J. Mol. Mod. 7, 306–317 (2001)

    Google Scholar 

  10. Koch, W., Holthausen, M.C.: A Chemist’s Guide to Density Functional Theory, 2nd edn., pp. 97–101. Wiley, New York (2001)

    Google Scholar 

  11. Cramer, C.J.: Essentials of Computational Chemistry: Theories and Models, 2nd edn., pp. 170–175. Wiley, New York (2002)

    Google Scholar 

  12. Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes, pp. 59–72. Imperial College Press, London (2005)

    Google Scholar 

  13. Davies, J.: The Physics of Low-Dimensional Semiconductors: An Introduction, p. 165. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  14. Iyakutti, K., Rajarajeswari, M., Dharma-Wardana, M.W.C.: The interaction of nitrogen molecules with (4, 0) single-walled carbon nanotube: electronic and structural effects. Nanotechnology 19, 185704 (2008)

    Article  Google Scholar 

  15. Simeoni, M., Picozzi, S., Delley, B.: An ab-initio study of pentacene on aluminum (1 0 0) surface. Surf. Sci. 562, 43–52 (2004)

    Article  Google Scholar 

  16. Roman, C., Ciontu, F., Courtois, B.: Aromatic amino acids physisorbed on graphene: electronic properties and Hamiltonian reduction. European Micro and Nano Systems 2004 (EMN04), Paris, France (2004)

  17. Sung, D., Hong, S., Kim, Y., Park, N., Kim, S., Maeng, S., Kim, K.: Ab initio study of the effect of water adsorption on the carbon nanotube field-effect transistor. Appl. Phys. Lett. 89, 243110 (2006)

    Article  Google Scholar 

  18. Lewars, E.: Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics, pp. 251–253. Kluwer Academic, Dordrecht (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Abadir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abadir, G.B., Walus, K. & Pulfrey, D.L. Basis-set choice for DFT/NEGF simulations of carbon nanotubes. J Comput Electron 8, 1–9 (2009). https://doi.org/10.1007/s10825-009-0263-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-009-0263-5

Keywords

Navigation