Skip to main content

Advertisement

Log in

Web application for studying the free energy of binding and protonation states of protein–ligand complexes based on HINT

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

A public web server performing computational titration at the active site in a protein–ligand complex has been implemented. This calculation is based on the Hydropathic interaction noncovalent force field. From 3D coordinate data for the protein, ligand and bridging waters (if available), the server predicts the best combination of protonation states for each ionizable residue and/or ligand functional group as well as the Gibbs free energy of binding for the ionization-optimized protein–ligand complex. The 3D structure for the modified molecules is available as output. In addition, a graph depicting how this energy changes with acidity, i.e., as a function of added protons, can be obtained. This data may prove to be of use in preparing models for virtual screening and molecular docking. A few illustrative examples are presented. In β secretase (2va7) computational titration flipped the amide groups of Gln12 and Asn37 and protonated a ligand amine yielding an improvement of 6.37 kcal mol−1 in the protein–ligand binding score. Protonation of Glu139 in mutant HIV-1 reverse transcriptase (2opq) allows a water bridge between the protein and inhibitor that increases the protein–ligand interaction score by 0.16 kcal mol−1. In human sialidase NEU2 complexed with an isobutyl ether mimetic inhibitor (2f11) computational titration suggested that protonating Glu218, deprotonating Arg237, flipping the amide bond on Tyr334, and optimizing the positions of several other polar protons would increase the protein–ligand interaction score by 0.71 kcal mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Guanidinium and guanidine have surprisingly similar hydropathic properties: all of the nitrogens in either case are both H-bond donors and acceptors; the unsaturation in the neutral species compensates for the loss of the H+; and the formal charge is quite delocalized.

References

  1. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucl Acids Res 28:235

    Article  CAS  Google Scholar 

  2. Weichenberger CX, Sippl MJ (2006) Bioinformatics 22:1397

    Article  CAS  Google Scholar 

  3. Weichenberger CX, Sippl MJ (2006) Structure 14:967

    Article  CAS  Google Scholar 

  4. Word JM, Lovell SC, Richardson JS, Richardson DC (1999) J Mol Biol 285:1735

    Article  CAS  Google Scholar 

  5. Hooft RW, Sander C, Vriend G (1996) Proteins 26:363

    Article  CAS  Google Scholar 

  6. McDonald IK, Thornton JM (1995) Protein Eng 8:217

    Article  CAS  Google Scholar 

  7. Cozzini P, Fornabaio M, Marabotti A, Abraham DJ, Kellogg GE, Mozzarelli A (2004) Curr Med Chem 11:3093

    CAS  Google Scholar 

  8. Gohlke H, Klebe G (2002) Angew Chem Int Ed 41:2644

    Article  CAS  Google Scholar 

  9. Lazaridis T (2002) Curr Org Chem 6:1319

    Article  CAS  Google Scholar 

  10. Wang W, Donini O, Reyes CM, Kollman PA (2001) Annu Rev Biophys Biomol Struct 30:211

    Article  CAS  Google Scholar 

  11. Ajay, Murcko MA (1995) J Med Chem 38:4953

    Article  CAS  Google Scholar 

  12. Böhm H-J (1994) J Comput-Aided Mol Des 8:243

    Article  Google Scholar 

  13. Böhm H-J (1998) J Comput-Aided Mol Des 12:309

    Article  Google Scholar 

  14. Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP (1997) J Comput Aided Mol Des 11:425

    Article  CAS  Google Scholar 

  15. Brady GP, Sharp KA (1997) Curr Opin Struct Biol 7:215

    Article  CAS  Google Scholar 

  16. Ben-Naim A (1997) J Chem Phys 107:3698

    Article  CAS  Google Scholar 

  17. Dill KA (1997) J Biol Chem 272:701

    CAS  Google Scholar 

  18. Chou JJ, Li S, Klee CB, Bax A (2001) Nat Struct Biol 8:990

    Article  CAS  Google Scholar 

  19. Gohlke H, Hendlich M, Klebe G (2000) J Mol Biol 295:337

    Article  CAS  Google Scholar 

  20. Reddy MR, Erion MD, Agarwal A (2000) Rev Comput Chem 16:217

    Article  CAS  Google Scholar 

  21. Kollman PA (1993) Chem Rev 93:2395

    Article  CAS  Google Scholar 

  22. Åqvist J, Luzhkov VB, Brandsal BO (2002) Acc Chem Res 35:358

    Article  Google Scholar 

  23. Jorgensen WL (1989) Acc Chem Res 22:184

    Article  CAS  Google Scholar 

  24. Reddy MR, Erion MD, Agarwal A (2000) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 16. Wiley-VCH, New York, pp 217–304

    Chapter  Google Scholar 

  25. Weichenberger CX, Sippl MJ (2007) Nucl Acids Res 35:W403

    Article  Google Scholar 

  26. Davis IW, Murray LW, Richardson JS, Richardson DC (2004) Nucl Acids Res 32:W615

    Article  CAS  Google Scholar 

  27. Hooft RW, Vriend G, Sander C, Abola EE (1996) Nature 381:272

    Google Scholar 

  28. Zhong W, Gallivan JP, Zhang Y, Li L, Lester HA, Dougherty DA (1998) Proc Natl Acad Sci USA 95:12088

    Article  CAS  Google Scholar 

  29. Murphy RB, Philipp DM, Friesner RA (2000) J Comput Chem 21:1442

    Article  CAS  Google Scholar 

  30. Gao J, Xia X (1992) Science 258:631

    Article  CAS  Google Scholar 

  31. Kuhn B, Kollman PA, Stahl M (2004) J Comput Chem 25:1865

    Article  CAS  Google Scholar 

  32. Simonson T, Carlsson J, Case DA (2004) J Am Chem Soc 126:4167

    Article  CAS  Google Scholar 

  33. Mongan J, Case DA, McCammon JA (2004) J Comput Chem 25:2038

    Article  CAS  Google Scholar 

  34. Nicholls A, Honig B (1991) J Comput Chem 12:435

    Article  CAS  Google Scholar 

  35. Voges D, Karshikoff A (1998) J Chem Phys 108:2219

    Article  CAS  Google Scholar 

  36. Krishtalik LI, Kuznetsov AM, Mertz EL (1997) Proteins: Struct Funct Genet 28:174

    Article  CAS  Google Scholar 

  37. Demchuk E, Wade RC (1996) J Phys Chem 100:17373

    Article  CAS  Google Scholar 

  38. Antosiewicz J, McCammon JA, Gilson MK (1994) J Mol Biol 238:415

    Article  CAS  Google Scholar 

  39. Yang A-S, Gunner MR, Sampogna R, Sharp K, Honig B (1993) Proteins: Struct Funct Genet 15:252

    Article  CAS  Google Scholar 

  40. Beroza P, Fredkin DR, Okamura MY, Feher G (1991) Proc Natl Acad Sci USA 88:5804

    Article  CAS  Google Scholar 

  41. Bashford D, Karplus M (1990) Biochemistry 29:10219

    Article  CAS  Google Scholar 

  42. Georgescu RE, Alexov EG, Gunner MR (2002) Biophys J 83:1731

    Article  CAS  Google Scholar 

  43. Bartlett GJ, Porter CT, Borkakoti N, Thornton JM (2002) J Mol Biol 324:105

    Article  CAS  Google Scholar 

  44. Koumanov A, Ruterjans H, Karshikoff A (2002) Proteins: Struct Funct Genet 46:85

    Article  CAS  Google Scholar 

  45. Van Vlijmen HWT, Schaefer M, Karplus M (1998) Proteins: Struct Funct Genet 33:145

    Article  Google Scholar 

  46. Nielsen JE, Vriend G (2001) Proteins: Struct Funct Genet 43:403

    Article  CAS  Google Scholar 

  47. Mehler EL, Guarnieri F (1999) Biophys J 77:3

    Article  CAS  Google Scholar 

  48. Hansch C, Leo AJ (1979) Substituent constants for correlation analysis in chemistry and biology. Wiley, New York

    Google Scholar 

  49. Cozzini P, Fornabaio M, Marabotti A, Abraham DJ, Kellogg GE, Mozzarelli A (2002) J Med Chem 45:2469

    Article  CAS  Google Scholar 

  50. Burnett JC, Botti P, Abraham DJ, Kellogg GE (2001) Proteins: Struct Funct Genet 42:355

    Article  CAS  Google Scholar 

  51. Burnett JC, Kellogg GE, Abraham DJ (2000) Biochemistry 39:1622

    Article  CAS  Google Scholar 

  52. Abraham DJ, Kellogg GE, Holt JM, Ackers GK (1997) J Mol Biol 272:613

    Article  CAS  Google Scholar 

  53. Cashman DJ, Kellogg GE (2004) J Med Chem 47:1360

    Article  CAS  Google Scholar 

  54. Cashman DJ, Scarsdale JN, Kellogg GE (2003) Nuc Acid Res 31:4410

    Article  CAS  Google Scholar 

  55. Kellogg GE, Scarsdale JN, Cashman DJ (1999) Med Chem Res 9:592

    CAS  Google Scholar 

  56. Kellogg GE, Scarsdale JN, Fornari FA (1998) Nuc Acid Res 26:4721

    Article  CAS  Google Scholar 

  57. Spyrakis F, Cozzini P, Bertoli C, Marabotti A, Kellogg GE, Mozzarelli A (2007) BMC Struct Biol 7:4

    Article  Google Scholar 

  58. Marabotti A, Spyrakis F, Facchiano A, Cozzini P, Alberti S, Kellogg GE, Mozzarelli A (2008) J Comput Chem 29:1955

    Article  CAS  Google Scholar 

  59. Yakovlev VA, Barani IJ, Rabender CS, Black SM, Leach JK, Graves PR, Kellogg GE, Mikkelsen RB (2007) Biochemistry 46:11671

    Article  CAS  Google Scholar 

  60. Kellogg GE, Fornabaio M, Chen DL, Abraham DJ, Spyrakis F, Cozzini P, Mozzarelli A (2006) J Mol Graph. Model 24:434

    CAS  Google Scholar 

  61. Kellogg GE, Chen DL (2004) Chem Biodiver 1:98

    Article  CAS  Google Scholar 

  62. Tripathi A, Fornabaio M, Spyrakis F, Mozzarelli A, Cozzini P, Kellogg GE (2007) Chem Biodiver 4:2564

    Article  CAS  Google Scholar 

  63. Fornabaio M, Cozzini P, Mozzarelli A, Abraham DJ, Kellogg GE (2003) J Med Chem 46:4487

    Article  CAS  Google Scholar 

  64. Tetko IV, Gasteiger J, Todeschini R, Mauri A, Livingstone D, Ertl P, Palyulin VA, Radchenko EV, Zefirov NS, Makarenko AS, Tanchuk VY, Prokopenko VV (2005) J Comput Aid Mol Des 19:453

    Article  CAS  Google Scholar 

  65. http://www.q-pharm.com/home/contents/drug_d/order_form/online_services/pka_prediction (accessed October 2008)

  66. Gordon JC, Myers JB, Folta T, Shoja V, Heath LS, Onufriev A (2005) Nucl Acid Res 33:W368

    Article  CAS  Google Scholar 

  67. Kantardjiev AA, Atanasov BP (2006) Nucl Acid Res 34:W43

    Article  CAS  Google Scholar 

  68. Spyrakis F, Fornabaio M, Cozzini P, Mozzarelli A, Abraham DJ, Kellogg GE (2004) J Am Chem Soc 126:11764

    Article  CAS  Google Scholar 

  69. Navia MA, Fitzgerald PMD, McKeever BM, Leu CT, Heimbach JC, Herber WK, Sigal IS, Darke PL, Springer JP (1989) Nature 337:615

    Article  CAS  Google Scholar 

  70. Sybyl, version 7.3 (2006) Tripos Associates Inc., 1699 S Hanley Rd., St. Louis, MO 631444, USA

  71. http://www.edusoft-lc.com/hint (Accessed May 2008)

  72. Kellogg GE, Fornabaio M, Chen DL, Abraham JD (2005) Internet Electr J Mol Design 4:194

    CAS  Google Scholar 

  73. http://www.python.org (Accessed May 2008)

  74. http://www.gnuplot.info (Accessed May 2008)

  75. Amadasi A, Surface JA, Spyrakis F, Cozzini P, Mozzarelli A, Kellogg GE (2008) J Med Chem 51:1063

    Article  CAS  Google Scholar 

  76. Edwards PD, Albert JS, Sylvester M, Aharony D, Andisik D, Callaghan O, Campbell JB, Carr RA, Chessari G, Congreve M, Frederickson M, Folmer RH, Geschwindner S, Koether G, Kolmodin K, Krumrine J, Mauger RC, Murray CW, Olsson LL, Patel S, Spear N, Tian G (2007) J Med Chem 50:5912

    Article  CAS  Google Scholar 

  77. Chavas LMG, Tringali C, Fusi P, Venerando B, Tettamanti G, Kato R, Monti E, Wakatsuki S (2005) J Biol Chem 280:469

    CAS  Google Scholar 

  78. Spyrakis F, Amadasi A, Fornabaio M, Abraham DJ, Mozzarelli A, Kellogg GE, Cozzini P (2007) Eur J Med Chem 42:921

    Article  CAS  Google Scholar 

  79. Fornabaio M, Spyrakis F, Mozzarelli A, Cozzini P, Abraham DJ, Kellogg GE (2004) J Med Chem 47:4507

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of the US N.I.H. Grant GM071894. In addition, the assistance of Dr. P. D. Mosier in configuring the server hardware and software is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen E. Kellogg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayden, A.S., Fornabaio, M., Scarsdale, J.N. et al. Web application for studying the free energy of binding and protonation states of protein–ligand complexes based on HINT. J Comput Aided Mol Des 23, 621–632 (2009). https://doi.org/10.1007/s10822-009-9270-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-009-9270-7

Keywords

Navigation