Skip to main content
Log in

Formal Power Series

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

We present a formalization of the topological ring of formal power series in Isabelle/HOL. We also formalize formal derivatives, division, radicals, composition and reverses. As an application, we show how formal elementary and hyper-geometric series yield elegant proofs for some combinatorial identities. We easily derive a basic theory of polynomials. Then, using a generic formalization of the fraction field of an integral domain, we obtain formal Laurent series and rational functions for free.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Chaieb, A.: Automated methods for formal proofs in simple arithmetics and algebra. Ph.D. thesis, Technische Universität München, Germany (2008)

  2. Chaieb, A., Wenzel, M.: Context aware calculation and deduction—ring equalities via Gröbner bases in Isabelle. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.) CALCULEMUS 2007. Lecture Notes in Computer Science, vol. 4573, pp. 27–39. Springer (2007)

  3. Goulden, I.P., Jackson, D.M.: Combinatorial Enumeration. Dover Publications, Incorporated (2004)

  4. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: a Foundation for Computer Science. Addison-Wesley, Boston (1994)

    MATH  Google Scholar 

  5. Haftmann, F., Wenzel, M.: Constructive type classes in Isabelle. In: Altenkirch, T., McBride, C. (eds.) Types for Proofs and Programs (2006)

  6. Harrison, J.: Automating elementary number-theoretic proofs using Gröbner bases. In: Pfenning, F. (ed.) Proceedings of CADE 21. Lecture Notes in Computer Science, vol. 4603, pp. 51–66. Springer, Bremen, Germany (2007)

    Google Scholar 

  7. Henrici, P.: Applied and Computational Complex Analysis, vol. 1. Wiley, New York (1988)

    Google Scholar 

  8. Nipkow, T., Paulson, L.C.: Proof pearl: defining functions over finite sets. In: Hurd, J. (ed.) Theorem Proving in Higher Order Logics (TPHOLs 2005). Lecture Notes in Computer Science, vol. 3603, pp. 385–396. Springer (2005)

  9. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL—A Proof Assistant for Higher-Order Logic. Lecture Notes in Computer Science, vol. 2283. Springer (2002)

  10. Niven, I.: Formal power series. Am. Math. Mon. 76(8), 871–889 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rudnicki, P., Trybulec, A.: Multivariate polynomials with arbitrary number of variables. Formaliz. Math. 11(1), 95–110 (1999)

    Google Scholar 

  12. Wenzel, M.: Type classes and overloading in higher-order logic. In: Gunter, E.L., Felty, A. (eds.) Theorem Proving in Higher Order Logics (TPHOLs ’97). Lecture Notes in Computer Science, vol. 1275 (1997)

  13. Wenzel, M.: Isabelle/Isar—a versatile environment for human-readable formal proof documents. Ph.D. thesis, TU München. http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.html (2002)

  14. Wilf, H.S.: Generatingfunctionology. Academic (1990)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amine Chaieb.

Additional information

The research was supported by the Engineering and Physical Sciences Research Council [grant number EP/G002290/1].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaieb, A. Formal Power Series. J Autom Reasoning 47, 291–318 (2011). https://doi.org/10.1007/s10817-010-9195-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-010-9195-9

Keywords

Navigation