Skip to main content
Log in

Adhesion of Chlorella vulgaris to solid surfaces, as mediated by physicochemical interactions

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Although adhesion of bacteria and yeast have been extensively studied by a wide range of experimental and theoretical approaches, significantly less attention has been focused on microalgae adhesion to solid materials. This work is focused on physicochemical aspects of microalgae adhesion. The results are based on experimental characterization of surface properties of both microalgae and solids by contact angle and zeta potential measurements. These data are used in modeling the surface interactions (thermodynamic and colloidal models) resulting in quantitative prediction of the interaction intensities. Finally, the model predictions are compared with experimental adhesion tests of microalgae onto model solids in order to identify the physicochemical forces governing the microalgae–solid interaction. The model solids were prepared in order to cover a wide range of properties (hydrophobicity and surface charge). The results revealed that, in low ionic strength environment, the adhesion was influenced mostly by electrostatic attraction/repulsion between surfaces, while with increasing ionic strength grew the importance of apolar (hydrophobic) interactions. The impact of solid surface properties on the degree of colonization by microlagae was statistically more significant than the influence of medium composition on cell surface of Chlorella vulgaris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barberousse H, Brayner R, Do Rego AMB, Castaing JC, Beurdeley-Saudou P, Colombert JF (2007) Adhesion of façade coating colonizers, as mediated by physic–chemical properties. Biofouling 23:15–24

    Article  PubMed  CAS  Google Scholar 

  • Boonaert CJ-P, Dupont-Gillain CC, Dengis PB, Dufrene YF, Rouxhet PG (1999) Cell separation, flocculation. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis and bioseparation. Wiley, New York, pp 531–548

    Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    Article  CAS  Google Scholar 

  • Bos R, van der Mei HC, Busscher HJ (1999) Physicochemistry of initial microbial adhesive interactions—its mechanisms and methods for study. FEMS Microbiol Rev 23:179–230

    PubMed  CAS  Google Scholar 

  • Brányiková I, Maršálková B, Doucha J, Brányik T, Bišová K, Zachleder V, Vítová M (2011) Microalgae—novel highly efficient starch producers. Biotechnol Bioeng 108:766–776

    Article  PubMed  Google Scholar 

  • Callow ME (2000) Algal biofilms. In: Evans LV (ed) Biofilms: recent advances in their study and control. Hardwood, Amsterdam, pp 189–209

    Google Scholar 

  • Carvalho AP, Meireles LA, Malcata XF (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506

    PubMed  CAS  Google Scholar 

  • Carvalho AP, Silva SO, Baptista JM, Malcata Xavier F (2011) Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Appl Microbiol Biotechnol 89:1275–1288

    Article  PubMed  CAS  Google Scholar 

  • Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81

    Article  PubMed  CAS  Google Scholar 

  • Dengis PB, Nélissen LR, Rouxhet PG (1995) Mechanism of yeast flocculation: comparison of top and bottom-fermenting strains. Appl Environ Microbiol 61:718–728

    PubMed  CAS  Google Scholar 

  • Doucha J, Lívanský K (2006) Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate. J Appl Phycol 18:811–826

    Article  CAS  Google Scholar 

  • Doušková I, Doucha J, Livansky K, Machat J, Novak P, Umysova D, Zachleder V, Vitova M (2009) Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Appl Microbiol Biotechnol 82:179–185

    Article  PubMed  Google Scholar 

  • Goers S, Schumann R, Haeubner N, Karsten U (2007) Fungal and algal biomass in biofilms on artificial surfaces quantified by ergosterol and chlorophyll a as biomarkers. Int Biodeter Biodegr 60:50–59

    Article  CAS  Google Scholar 

  • Hadjoudja S, Deluchat V, Baudu M (2010) Cell surface characterisation of Microcystis aeruginosa and Chlorella vulgaris. J Colloid Interf Sci 342:293–299

    Article  CAS  Google Scholar 

  • Irving TE, Allen GD (2011) Species and material considerations in the formation and development of microalgal biofilms. Appl Microbiol Biotechnol 92:283–294

    Article  PubMed  CAS  Google Scholar 

  • Johnson MB, Wen Z (2010) Development of an attached microalgal growth system for biofuel production. Appl Microbiol Biotechnol 85:525–534

    Article  PubMed  CAS  Google Scholar 

  • Kolská Z, Řezníčková A, Švorčík V (2012) Surface characterization of polymer foils. E-Polymers 083:1–13

    Google Scholar 

  • Korenevsky A, Beveridge TJ (2007) The surface physicochemistry and adhesiveness of Shewanella are affected by their surface polysaccharides. Microbiology 153:1872–1883

    Article  PubMed  CAS  Google Scholar 

  • Kuřec M, Brányik T (2011) The role of physicochemical interactions and FLO genes expression in the immobilization of industrially important yeasts by adhesion. Colloid Surf B-Biointerfaces 84:491–497

    Article  Google Scholar 

  • Lorite GS, Rodrigues CM, de Souza AA, Kranz C, Mizaikoff B, Cotta MA (2011) The role of conditioning film formation and surface chemical changes on Xylella fastidiosa adhesion and biofilm evolution. J Colloid Interf Sci 359:289–295

    Article  CAS  Google Scholar 

  • Ludyansky ML (1991) Algal fouling in the cooling system. Biofouling 3:13–21

    Article  CAS  Google Scholar 

  • Mei L, van der Mei HC, Ren Y, Norde W, Busscher HJ (2009) Poisson analysis of streptococcal bond strengthening on stainless steel with and without a salivary conditioning film. Langmuir 25:6227–6231

    Article  PubMed  CAS  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    Article  PubMed  CAS  Google Scholar 

  • Raja R, Hemaiswarya S, Kumar NA, Sridhar S, Rengasamy R (2008) A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol 34:77–88

    Article  PubMed  CAS  Google Scholar 

  • Redman JA, Walker SL, Elimelech M (2004) Bacterial adhesion and transport in porous media: role of the secondary energy minimum. Environ Sci Technol 38:1777–1785

    Article  PubMed  CAS  Google Scholar 

  • Sekar R, Venugopalan VP, Satpathy KK, Nair KVK, Rao VNR (2004) Laboratory studies on adhesion of microalgae to hard substrates. Hydrobiologia 512:109–116

    Article  Google Scholar 

  • Sharma PK, Hanumantha Rao K (2002) Analysis of different approaches for evaluation of surface energy of microbial cells by contact angle goniometry. Adv Colloid Interfac 98:341–463

    Article  CAS  Google Scholar 

  • Smole MS, Stakne K, Kleinschek KS, Kurecic M, Bele M, Svetec DG, Ribitsch V (2009) Electrokinetic properties of polypropylene-layered silicate nanocomposite fibers. J Appl Polym Sci 113:1276–1281

    Article  CAS  Google Scholar 

  • Tang HY, Chen M, Garcia MED, Abunasser N, Ng KYS, Salley SO (2011) Culture of microalgae Chlorella minutissima for biodiesel feedstock production. Biotechnol Bioeng 108:2280–2287

    Article  CAS  Google Scholar 

  • van der Mei HC, Bos R, Busscher HJ (1998) A reference guide to microbial cell surface hydrophobicity based on contact angles. Colloid Surf B-Biointerfaces 11:213–221

    Article  Google Scholar 

  • van Oss CJ (1995) Hydrophobicity of biosurfaces—origin, quantitative determination and interaction energies. Colloid Surf B-Biointerfaces 5:91–110

    Article  Google Scholar 

  • van Oss CJ (2003) Long-range and short-range mechanisms of hydrophobic attraction and hydrophilic repulsion in specific and aspecific interactions. Mol Recognit 16:177–190

    Article  Google Scholar 

  • van Oss CJ (2006) Interfacial forces in aqueous media. Taylor & Francis, Boca Raton, pp 22–24

    Google Scholar 

  • Xu L, Guo C, Wang F, Zheng S, Liu Ch Z (2011) A simple and rapid harvesting method for microalgae by in situ magnetic separation. Bioresour Technol 102:10047–10051

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Grant Agency of the Czech Republic (project GAČR P503/10/1270) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Branyik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sirmerova, M., Prochazkova, G., Siristova, L. et al. Adhesion of Chlorella vulgaris to solid surfaces, as mediated by physicochemical interactions. J Appl Phycol 25, 1687–1695 (2013). https://doi.org/10.1007/s10811-013-0015-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-013-0015-6

Keywords

Navigation