Skip to main content
Log in

Lipid and fatty acid yield of nine stationary-phase microalgae: Applications and unusual C24–C28 polyunsaturated fatty acids

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Nine microalgal species from the classes Bacillariophyceae, Cryptophyceae, Prymnesiophyceae and Dinophyceae were isolated from Australian waters, cultured to stationary phase and analyzed for their lipid and fatty acid composition and yield. Five species (Pavlova pinguis, Heterocapsa niei, Proteomonas sulcata, Navicula jeffreyi and Thalassiosira pseudonana) produced high proportions of triacylglycerol (TAG: 22–57% total lipid). An unidentified Navicula-like diatom (CS-786), despite having a low TAG content, had the highest EPA yield (5.8 mg L−1), due to high biomass and a high relative proportion of EPA. Heterocapsa niei had the highest DHA yield (2.9 mg L−1), due to a high cellular lipid and DHA content (171 pg cell−1 and 13.7 pg cell−1, respectively) despite its relatively low biomass. The desirable PUFA composition and yield of both diatom CS-786 and H. niei make them potential candidates for optimization of biomass and PUFA production for use as live-feeds in aquaculture. In addition, H. niei may have potential as a source of DHA for other uses. Low proportions (< 1.2%) of 24:6(n−3) accompanied by trace proportions of 24:5(n−6) were detected in most strains, while 28:8(n−3) was found in dinoflagellates and also in the prymnesiophyte P. pinguis. All non-diatomaceous species contained 26:7(n−3) in minor quantities. This is the first time these unusual C24 and C26 PUFA have been reported in microalgae and the first report of C28 PUFA in a microalga other than dinoflagellates. Possible biosynthetic reasons why these might occur in stationary phase cultures are considered and the likely dietary transfer of these PUFA to higher aquatic life is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bazan NG, Colangelo V, Lukiw WJ (2002) Prostaglandins and other lipid mediators in Alzheimer’s disease. Prostaglandins & Other Lipid Mediators 68-69: 197–210.

    Google Scholar 

  • Blackburn SI, Bolch CJ, Haskard KA, Hallegraeff GM (2001) Reproductive compatibility among four global populations of the toxic dinoflagellate Gymnodinium catenatum (Dinophyceae). Phycologia 40: 78–87.

    Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 912–917.

    Google Scholar 

  • Bowles RD, Hunt AE, Bremer GB, Duchars MG, Eaton RA (1999) Long-chain n-3 polyunsaturated fatty acid production by the members of the marine protistan group the thraustochytrids: Screening of isolates and optimisation of docosahexaenoic acid production. J. Biotechnol. 70: 193–202.

    Article  Google Scholar 

  • Brown MR, Dunstan GA, Norwood SJ, Miller KA (1996) Effects of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonana. J. Phycol. 34: 64–73.

    Article  Google Scholar 

  • Brown MR, Jeffrey SW, Volkman JK, Dunstan GA (1997) Nutritional properties of microalgae for mariculture. Aquaculture 151: 315–331.

    Article  Google Scholar 

  • Carballeira NM, Sostre A, RodrÍguez AD (1997) Phospholipid fatty acid composition of gorgonians of the genus Eunicea: Further identification of tetracosapolyenoic acids. Comp. Biochem. Physiol. B 118: 257–260.

    Article  Google Scholar 

  • Carlson SE (1999) Long-chain polyunsaturated fatty acids and development of human infants. Acta-Paediatrica 88(Suppl. 430): 72–77.

    Article  PubMed  Google Scholar 

  • Carvlalho AP, Malcata FX (2000) Effect of culture media on production of polyunsaturated fatty acids by Pavlova lutheri. Cryptogamie Algol. 21: 59–71.

    Article  Google Scholar 

  • Dunstan GA, Volkman JK, Barrett SM, Garland CD (1993) Changes in the lipid composition and maximisation of the polyunsaturated fatty acid content of three microalgae grown in mass culture. J. Appl. Phycol. 5: 71–83.

    Google Scholar 

  • Dunstan GA, Volkman JK, Barrett SM, Leroi J-M, Jeffrey SW (1994) Essential polyunsaturated fatty acids from 14 species of diatom (Bacillariophyceae). Phytochemistry 35: 155–161.

    Article  Google Scholar 

  • Dunstan GA, Volkman JK, Jeffrey SW, Barrett SM (1992) Biochemical composition of microalgae from the green algal classes Chlorophyceae and Prasinophyceae. 2. Lipid classes and fatty acids. J. Exp. Mar. Biol. Ecol. 161: 115–134.

    Article  Google Scholar 

  • Enright CT, Newkirk GF, Craigie JS, Castell JD (1986) Growth of juvenile Ostrea edulis L. fed Chaetoceros calcitrans Schütt of varied chemical composition. J. Exp. Mar. Biol. Ecol. 96: 15–26.

    Article  Google Scholar 

  • Ghys A, Bakker E, Hornstra G, van den Hout M (2002) Red blood cell and plasma phospholipid arachidonic and docosahexaenoic acid levels at birth and cognitive development at 4 years of age. Early Human Development 69: 83–90.

    Article  PubMed  Google Scholar 

  • Go JV, Řezanka T, Srebnik M, Dembitsky VM (2002) Variability of fatty acid components of marine and freshwater gastropod species from the littoral zone of the Red Sea, Mediterranean Sea, and Sea of Galilee. Biochem. Syst. Ecol. 30: 819–835.

    Article  Google Scholar 

  • Guillard RRL (1973) Division rates, in Stein Jr (ed), Handbook of Phycological Methods: Culture Methods and Growth Measurements, Cambridge University Press, Cambridge, pp. 289–311.

    Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervaceaCleve. Can. J. Microbiol. 8: 229–239.

    PubMed  Google Scholar 

  • Harrison PJ, Thompson PA, Calderwood GS (1990) Effects of nutrient and light limitation on the biochemical composition of phytoplankton. J. Appl. Phycol. 2: 45–56.

    Google Scholar 

  • Kawasaki K, Nabeshima YI, Ishihara K, Kaneniwa M, Ooizumi T (2000) High level of 6,9,12,15,18,21-tetracosahexaenoic acid found in lipids of Ophiuroidea Ophiura sarsi Lütken. Fish. Sci. 66: 614–615.

    Article  Google Scholar 

  • Kubota T, Tsuda M, Kobayashi J (2000) Amphodinolide V, novel 14-membered macrolide from marine dinoflagellate Amphidinium sp. Tetrahedron Lett. 41(5): 713–716.

    Article  Google Scholar 

  • Leblond JD, Chapman PJ (2000) Lipid class distribution of highly unsaturated long chain fatty acids in marine dinoflagellates. J. Phycol. 36: 1103–1108.

    Article  Google Scholar 

  • Lewis T, Nichols PD, McMeekin TA (2000) Evaluation of extraction methods for recovery of fatty acids from lipid-producing microheterotrophs. J. Microbiol. Methods 43: 107–116.

    Article  PubMed  Google Scholar 

  • McKenzie JD, Black KD, Kelly MS, Newton LC, Handley LL, Scrimgeour CM, Raven JA, Henderson RJ (2000) Comparisons of fatty acid and stable isotope ratios in symbiotic and non-symbiotic brittlestars from Oban Bay, Scotland. J. Mar. Biol. Ass. U.K. 80: 311–320.

    Article  Google Scholar 

  • McKinnon AD, Duggan S, Nichols PD, Rimmer MA, Semmens G, Robino B (2003) The potential of tropical paracalanid copepods as live feeds in aquaculture. Aquaculture 223: 89–106.

    Article  Google Scholar 

  • Makrides M, Neumann M, Simmer K, Pater J, Gibson R (1995) Are long‐chain polyunsaturated fatty acids essential nutrients in infancy? The Lancet 345: 1463–1468.

    Article  Google Scholar 

  • Mansour MP, Volkman JK, Holdsworth DG, Jackson AE, Blackburn SI (1999a) Very-long-chain (C28) highly unsaturated fatty acids in marine dinoflagellates. Phytochemistry 50: 541–548.

    Article  Google Scholar 

  • Mansour MP, Volkman JK, Jackson AE, Blackburn SI (1999b) The fatty acid and sterol composition of five marine dinoflagellates. J. Phycol. 35: 710–720.

    Article  Google Scholar 

  • Mansour MP, Volkman JK, Blackburn SI (2003) The effect of growth phase on the lipid, fatty acid and sterol composition in the marine dinoflagellate, Gymnodinium sp. in batch culture. Phytochemistry 63: 145–153.

    Article  PubMed  Google Scholar 

  • Mansour MP, Holdsworth DG, Forbes S, Macleod C, Volkman JK (2005) High contents of 24:6(n-3) and 20:1(n-13) fatty acids in the brittle star Amphiura elandiformis from Tasmanian coastal sediments. Biochem. Syst. Ecol. 33: 659–674.

    Article  Google Scholar 

  • Martínez-Fernández E, Acosta-Salmón H, Rangel-Dávalos C (2004) Ingestion and digestion of 10 species of microalgae by winged pearl oyster Pteria sterna (Gould, 1851) larvae. Aquaculture 230: 417–423.

    Article  Google Scholar 

  • Myers RA, Worm B (2003) Rapid world wide depletion of predatory fish communities. Nature 423: 280–283.

    Article  PubMed  Google Scholar 

  • Nichols PD, Danaher KT, Koslow JA (2003) Occurrence of high levels of tetracosahexaenoic acid in the jellyfish Aurelia sp. Lipids 38: 1207–1210.

    PubMed  Google Scholar 

  • Nichols BW, Harris P, James AT (1965) The biosynthesis of trans3-hexadecenoic acid by Chlorella vulgaris. Biochem. Biophys. Res. Commun. 21: 473–79.

    Article  PubMed  Google Scholar 

  • Ota T, Chihara Y, Itabashi Y, Takagi T (1994a) Occurrence of all-cis-6,9,12,15,18,21-tetracosahexaenoic acid in flatfish lipids. Fish. Sci. 60: 171–175.

    Google Scholar 

  • Ota T, Kawabata Y, Ando Y (1994b) Positional distribution of 24:6(n-3) in triacyl-sn-glycerols from flathead flounder liver and flesh. J. Amer. Oil Chem. Soc. 71: 475–478.

    Google Scholar 

  • Peet M, Brind J, Ramchand CN, Shah S, Vankar GK (2001) Two double-blind placebo-controlled pilot studies of eicosapentaenoic acid in the treatment of schizophrenia. Schizophrenia Res. 49: 243–251.

    Article  Google Scholar 

  • Phleger CF, Nelson MM, Mooney BD, Nichols PD (2001) Interannual variations in the lipids of the Antarctic pteropods Clione limacine and Clio pyramidata. Comp. Biochem. Physiol. B 128: 553–564.

    Article  PubMed  Google Scholar 

  • Rashida A, Karmali JD (1996) Historical perspective and potential use of n-3 fatty acids in therapy of cancer cachexia. Suppl. Nutrit. 12: S2–S4.

    Google Scholar 

  • Reitan KI, Rainuzzo JR, Oie G, Olsen Y (1997) A review of the nutritional effects of algae in marine fish larvae. Aquaculture 155: 207–221.

    Article  Google Scholar 

  • Renaud SM, Thinh L-V, Parry DL (1999) The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture. Aquaculture 170: 147–159.

    Article  Google Scholar 

  • Řezanka T (2000) Analysis of very long chain polyunsaturated fatty acids using high-performance liquid chromatography – atmospheric pressure chemical ionization mass spectrometry. Biochem. Syst. Ecol. 28: 847–856.

    Article  PubMed  Google Scholar 

  • Rose DP, Connolly JM (1999) Omega-3 fatty acids as cancer chemopreventative agents. Pharmacology &Therapeutics 83: 217–244.

    Google Scholar 

  • Sato D, Ando Y, Tsujimoto R, Kawasaki K-I (2001) Identification of novel nonmethylene-interrupted fatty acids, 7E,13E-20:2, 7E,13E,17Z-20:3, 9E,15E,19Z-22:3, and 4Z,9E,15E,19Z-22:4, in Ophiuroidea (brittle star) lipids. Lipids 36: 1371–1375.

    PubMed  Google Scholar 

  • Sherr EB, Sherr BF (1993) Preservation and storage of samples for enumeration of heterotrophic protists, in Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Florida, pp. 207–212.

    Google Scholar 

  • Shifrin NS, Chisholm SW (1981) Phytoplankton lipids: Interspecific differences and effects of nitrate, silicate and light-dark cycles. J. Phycol. 17: 374–384.

    Article  Google Scholar 

  • Sidhu KS (2003) Health benefits and potential risks related to consumption of fish or fish oil. Regul. Toxicol. Pharmacol. 38: 336–344.

    Article  PubMed  Google Scholar 

  • Stevens LJ, Zentall SS, Abate ML, Kuczek T, Burgess JR (1996) Omega-3 fatty acids in boys with behavior, learning, and health problems. Physiology &Behavior 59: 915–920.

    Google Scholar 

  • Su K-P, Shen WW, Huang S-Y (2001) Omega-3 fatty acids as a psychotherapeutic agent for a pregnant schizophrenic patient. Eur. Neuropsychopharmacol. 11: 295–299.

    Article  PubMed  Google Scholar 

  • Svetashev VI, Vysotskii MV (1998) Fatty acids of Heliopora coerulea and chemotaxonomic significance of tetracosapolyenoic acids in coelenterates. Comp. Biochem. Physiol. B 119: 73–75.

    Article  Google Scholar 

  • Takagi T, Kaneniwa M, Itabashi Y (1986) Fatty acids in Crinoidea and Ophiuroidea – Occurrence of all-cis-6,9,12,15,18,21-tetracosahexaenoic acid. Lipids 21: 430–433.

    Google Scholar 

  • Thomas WH, Seibert DLR, Alden M, Neori A, Eldridge P (1984) Yields, photosynthetic efficiencies and proximate composition of dense marine microalgal cultures. III. Isochrysis sp. and Monallantus salina experiments and comparative conclusions. Biomass 5: 299–316.

    Article  Google Scholar 

  • Tonon T, Harvey D, Larson TR, Graham IA (2002) Long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. Phytochemistry 61: 14–24.

    Article  Google Scholar 

  • Tredici MR (1999) Bioreactors, Photo, in Flickinger MC, Drew SW (eds), Encyclopedia of Bioprocess Technology: Fermentation, Biocataylsis, and Bioseparation, Wiley, NY, pp. 395–419.

    Google Scholar 

  • Van Pelt CK, Huang M-C, Tschanz CL, Brenna JT (1999) An octaene fatty acid, 4,7,10,13,16,19,22,25-octacosaoctaenoic acid (28: 8n-3), found in marine oils. J. Lipid Res. 40: 1501–1505.

    PubMed  Google Scholar 

  • Volkman JK, Jeffrey SW, Nichols PD, Rogers GI, Garland CD (1989) Fatty acids and lipids of ten species of microalgae used in mariculture. J. Exp. Mar. Biol. Ecol. 128: 219–240.

    Article  Google Scholar 

  • Volkman JK, Nichols PD (1991) Applications of thin layer chromatography-flame ionization detection to the analysis of lipids and pollutants in marine and environmental samples. J. Planar Chromatogr. 4: 19–26.

    Google Scholar 

  • Vysotskii MV, Svetashev VI (1991) Identification, isolation and characterization of tetracosapolyenoic acids in lipids of marine coelenterates. Biochim. Biophys. Acta 1083: 161–165.

    PubMed  Google Scholar 

  • Wroble M, Mash C, Williams L, McCall RB (2002) Should long chain polyunsaturated fatty acids be added to infant formula to promote development? Appl. Develop. Psychol. 23: 99–112.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maged P. Mansour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mansour, M.P., Frampton, D.M.F., Nichols, P.D. et al. Lipid and fatty acid yield of nine stationary-phase microalgae: Applications and unusual C24–C28 polyunsaturated fatty acids. J Appl Phycol 17, 287–300 (2005). https://doi.org/10.1007/s10811-005-6625-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-005-6625-x

Keywords

Navigation