Skip to main content
Log in

Potential role of pioglitazone, caffeic acid and their combination against fatigue syndrome-induced behavioural, biochemical and mitochondrial alterations in mice

  • Research Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Chronic fatigue is an illness characterised by persistent and relapsing fatigue, often accompanied by numerous neuropsychiatric problems, such as anxiety and depression. The aetiology of chronic fatigue remains unclear so far. However, recent studies suggested the involvement of oxidative stress in this chronic debilitating disease. Alternatively, antioxidants have also been reported to have beneficial effect against chronic fatigue-like conditions. Therefore, present study has been designed to explore the potential role of pioglitazone, caffeic acid and their combination against chronic fatigue-like condition in mice. In the experimental protocol, the mice were put on the running wheel apparatus for 6 min test session daily for 21 days which produced fatigue-like condition. The locomotor activity and anxiety levels were measured on 0, 8th, 15th and 22nd days. The brains were isolated on 22nd day immediately after the behavioural assessments, oxidative damage and mitochondrial enzyme complexes were then estimated subsequently. Three weeks pioglitazone (5 and 10 mg/kg) and caffeic acid (5 and 10 mg/kg) pretreatment significantly attenuated the chronic fatigue-like condition (restored running wheel activity, locomotor activity and reduced anxiety-like behaviour) as compared to that in control (chronic fatigue) animals. Further, pioglitazone (5 and 10 mg/kg) and caffeic acid (5 and 10 mg/kg) drug treatments for 3 weeks significantly attenuated oxidative damage (decreased lipid peroxidation, nitrite concentration, restored reduction in glutathione and catalase levels), altered mitochondrial enzymes complex (I, II and IV) activities and mitochondrial redox activity (MTT assay) when compared with control. Further, combination of lower dose of pioglitazone (5 mg/kg) and caffeic acid (5 mg/kg) showed significant synergism in their protective effect which was significant as compared to their effect per se. The present study highlights the potential role of pioglitazone, caffeic acid and their combination in the pathophysiology of chronic fatigue-like condition in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afari N, Buchwald D (2003) Chronic fatigue syndrome: a review. Am J Psychiatry 160:221–236

    Article  PubMed  Google Scholar 

  • Amodio R, De Ruvo C, Sacchetti A, Di Santo A, Martelli N, Di Matteo V, Lorenzet R, Poggi A, Rotilio D, Cacchio M, Esposito E (2003) Caffeic acid phenethyl ester blocks apoptosis induced by low potassium in cerebellar granule cells. Int J Dev Neurosci 21(7):379–389

    Article  CAS  PubMed  Google Scholar 

  • Berman SB, Hastings TG (1999) Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s disease. J Neurochem 73:1127–1137

    Article  CAS  PubMed  Google Scholar 

  • Bristow DJ, Holmes DS (2007) Cortisol levels and anxiety related behaviors in cattle. Physiol Behav 90:626–628

    Article  CAS  PubMed  Google Scholar 

  • Castro L, Rodriguez M, Radi R (1994) Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide. J Biol Chem 269:29409–29415

    CAS  PubMed  Google Scholar 

  • Chung MJ, Walker PA, Hogstrand C (2006) Dietary phenolic antioxidants, caffeic acid and Trolox, protect rainbow trout gill cells from nitric oxide-induced apoptosis. Aquat Toxicol 80(4):321–328

    Article  CAS  PubMed  Google Scholar 

  • Devipriya N, Sudheer AR, Menon VP (2008) Caffeic acid protects human peripheral blood lymphocytes against gamma radiation-induced cellular damage. J Biochem Mol Toxicol 22(3):175–186

    Article  CAS  PubMed  Google Scholar 

  • Dobrian AD, Schriver SD, Khraibi AA, Prewitt RL (2004) Pioglitazone prevents hypertension and reduces oxidative stress in diet-induced obesity. Hypertension 43(1):48–56

    Article  CAS  PubMed  Google Scholar 

  • Ellman GL, Courtney KD, Andres V, Featherston RMA (1961) New and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • Flachenecker P, Bihler I, Weber F, Gottschalk M, Toyka KV, Rieckmann P (2004) Cytokine mRNA expression in patients with multiple sclerosis and fatigue. Mult Scler 10:165–169

    Article  CAS  PubMed  Google Scholar 

  • Fulle S, Mecocci P, Fanò G, Vecchiet I, Vecchini A, Racciotti D, Cherubini A, Pizzigallo E, Vecchiet L, Senin U, Beal MF (2000) Specific oxidative alterations in vastus lateralis muscle of patients with the diagnosis of chronic fatigue syndrome. Free Rad Biol Med 29(12):1252–1259

    Article  CAS  PubMed  Google Scholar 

  • Fulle S, Belia S, Vecchiet J, Morabito C, Vecchiet L, Fanò G (2003) Modification of the functional capacity of sarcoplasmic reticulum membranes in patients suffering from chronic fatigue syndrome. Neuromuscul Disord 13(6):479–484

    Article  PubMed  Google Scholar 

  • Fulle S, Pietrangelo T, Mancinelli R, Saggini R, Fano G (2007) Specific correlations between muscle oxidative stress and chronic fatigue syndrome: a working hypothesis. J Muscle Res Cell Motil 28:355–362

    Article  CAS  PubMed  Google Scholar 

  • García-Bueno B, Madrigal JL, Lizasoain I, Moro MA, Lorenzo P, Leza JC (2005) Peroxisome proliferator-activated receptor gamma activation decreases neuroinflammation in brain after stress in rats. J Biol Psychiatry 57(8):885–894

    Article  Google Scholar 

  • Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177(2):751–766

    CAS  PubMed  Google Scholar 

  • Green LC, Wagner DA, Glgowski J, Skipper PL, Wishnok JS, Tannebaum SR (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Ann Biochem 126:131

    Article  CAS  Google Scholar 

  • Gülçin İ (2006) Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology 217(2–3):213–220

    Article  PubMed  Google Scholar 

  • Gumieniczek A (2003) Effect of the new thiazolidinedione-pioglitazone on the development of oxidative stress in liver and kidney of diabetic rabbits. Life Sci 74(5):553–562

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Vij G, Sharma S, Tirkey N, Rishi P, Chopra K (2009) Curcumin, a polyphenolic antioxidant, attenuates chronic fatigue syndrome in murine water immersion stress model. Immunobiology 214(1):33–39

    Article  CAS  PubMed  Google Scholar 

  • Ishida H, Takizawa M, Ozawa S, Nakamichi Y, Yamaguchi S, Katsuta H, Tanaka T, Maruyama M, Katahira H, Yoshimoto K, Itagaki E, Nagamatsu S (2004) Pioglitazone improves insulin secretory capacity and prevents the loss of beta-cell mass in obese diabetic db/db mice: possible protection of beta cells from oxidative stress. Metabolism 53(4):488–494

    Article  CAS  PubMed  Google Scholar 

  • Jammes Y, Steinberg JG, Mambrini O, Bregeon F, Delliaux S (2005) Chronic fatigue syndrome: assessment of increased oxidative stress and altered muscle excitability in response to incremental exercise. J Intern Med 257:299–310

    Article  CAS  PubMed  Google Scholar 

  • Kalonia H, Kumar P, Kumar A, Nehru B (2009a) Effect of caffeic acid and rofecoxib and their combination against intrastriatal quinolinic acid induced oxidative damage, mitochondrial and histological alterations in rats. Inflammopharmacol 17:211–219

    Article  CAS  Google Scholar 

  • Kalonia H, Kumar P, Kumar A, Nehru B (2009b) Effects of caffeic acid, rofecoxib, and their combination against quinolinic acid-induced behavioral alterations and disruption in glutathione redox status. Neurosci Bull 25(6):343–352

    Article  CAS  PubMed  Google Scholar 

  • Kart A, Cigremis Y, Ozen H, Dogan O (2009) Caffeic acid phenethyl ester prevents ovary ischemia/reperfusion injury in rabbits. Food Chem Toxicol 47(8):1980–1984

    Article  CAS  PubMed  Google Scholar 

  • Kennedy G, Spence VA, McLaren M, Hill A, Underwood C, Belch JJF (2005) Oxidative stress levels are raised in chronic fatigue syndrome and are associated with clinical symptoms. Free Rad Biol Med 39(5):584–589

    Article  CAS  PubMed  Google Scholar 

  • Kiaei M, Kipiani K, Chen J, Calingasan NY, Beal MF (2005) Peroxisome proliferator-activated receptor-gamma agonist extends survival in transgenic mouse model of amyotrophic lateral sclerosis. Exp Neurol 191:331–336

    Article  CAS  PubMed  Google Scholar 

  • King TE (1967) Preparation of succinate dehydrogenase and reconstitution of succinate oxidase. Methods Enzymol 10:322

    Article  CAS  Google Scholar 

  • King TE, Howard RL (1967) Preparations and properties of soluble NADH dehydrogenases from cardiac muscle. Methods Enzymol 10:275

    Article  CAS  Google Scholar 

  • Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    Article  CAS  PubMed  Google Scholar 

  • Kroenke K, Wood DR, Mangelsdroff D, Meier NJ, Powell JB (1988) Chronic fatigue in primary care: prevalence, patient characteristics, and outcome. JAMA 260:929–934

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni SK (1999) Handbook of experimental pharmacology, 3rd edn. Vallabh Parkashan, New Delhi

    Google Scholar 

  • Kumar P, Padi SS, Naidu PS, Kumar A (2006) Effect of resveratrol on 3-nitropropionic acid-induced biochemical and behavioural changes: possible neuroprotective mechanisms. Behav Pharmacol 17(5–6):485–492

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Kaundal RK, More S, Sharma SS (2009) Beneficial effects of pioglitazone on cognitive impairment in MPTP model of Parkinson’s disease. Behav Brain Res 197(2):398–403

    Article  CAS  PubMed  Google Scholar 

  • Kuratsune H, Yamaguti K, Takahashi M, Misaki H, Tagawa S, Kitani T (1994) Acylcarnitine deficiency in chronic fatigue syndrome. Clin Infect Dis 18:S62–S67

    PubMed  Google Scholar 

  • Lane RJ, Barret CB, Woodrow D, Moss J, Fletcher R, Archard LC (1998) Muscle fibre characteristics and lactate responses to exercise in chronic fatigue syndrome. J Neurol Neurosurg Psychiatry 64:362–367

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Bowes RC, Van de Water B, Sillence C, Nagelkerke JF, Stevens JL (1997) Endoplasmic reticulum chaperones GRP78 and calreticulin prevent oxidative stress, Ca2+ disturbances, and cell death in renal epithelial cells. J Biol Chem 272(35):21751–21759

    Article  CAS  PubMed  Google Scholar 

  • Logan AC, Wong C (2001) Chronic fatigue syndrome: oxidative stress and dietary modifications. Alt Med Rev 6(5):450–459

    CAS  Google Scholar 

  • Lorusso L, Mikhaylova SV, Capelli E, Ferrari D, Ngonga GK, Ricevuti G (2009) Immunological aspects of chronic fatigue syndrome. Autoimmun Rev 8(4):287–291

    Article  CAS  PubMed  Google Scholar 

  • Luck H (1971) Catalase. In: Bergmeyer HU (ed) Methods of enzyme analysis. Academic Press, New York, p 885

    Google Scholar 

  • Madrigal JLM, Olivenza R, Moro MA, Lizasoain I, Lorenzo P, Rodrigo J, Leza JC (2001) Glutathione depletion, lipid peroxidation and mitochondrial dysfunction are induced by chronic stress in rat brain. Neuropsychopharmacology 24(4):420–429

    Article  CAS  PubMed  Google Scholar 

  • Manuel KB, Moorkens G, Vertommen J, De Leeuw I (2001) Antioxidant status and lipoprotein peroxidation in chronic fatigue syndrome. Life Sci 462(68):2037–2049

    Google Scholar 

  • McCully KK, Natelson BH (1999) Impaired oxygen delivery to muscle in chronic fatigue syndrome. Clin Sci 97:603–608

    Article  CAS  PubMed  Google Scholar 

  • McEleny K, Coffey R, Morrissey C, Fitzpatrick JM, Watson RW (2004) Caffeic acid phenethyl ester-induced PC-3 cell apoptosis is caspase-dependent and mediated through the loss of inhibitors of apoptosis proteins. BJU Int 94(3):402–406

    Article  CAS  PubMed  Google Scholar 

  • McTigue DM, Tripathi R, Wei P, Lash AT (2007) The PPAR gamma agonist pioglitazone improves anatomical and locomotor recovery after rodent spinal cord injury. Exp Neurol 205:396–406

    Article  CAS  PubMed  Google Scholar 

  • Moreno S, Farioli-Vecchioli S, Ceru MP (2004) Immunolocalization of peroxisome proliferator-activated receptors in the adult rat CNS. Neuroscience 123:131–145

    Article  CAS  PubMed  Google Scholar 

  • Nijs J, De Meirleir K (2004) Oxidative stress might reduce essential fatty acids in erythrocyte membranes of chronic fatigue syndrome patients. Nutr Neurosci 7:251–253

    Article  CAS  PubMed  Google Scholar 

  • Noelker C, Bacher M, Gocke P, Wei X, Klockgether T, Du Y, Dodel R (2005) The flavanoide caffeic acid phenethyl ester blocks 6-hydroxydopamine-induced neurotoxicity. Neurosci Lett 383(1–2):39–43

    Article  CAS  PubMed  Google Scholar 

  • Nomura S, Shimizu J, Kinjo M, Kametani H, Nakazawa T (1982) A new behavioral test for antidepressant drugs. Eur J Pharmacol 83:171–175

    Article  CAS  PubMed  Google Scholar 

  • Pall ML (2000) Elevated, sustained peroxynitrite levels as the cause of chronic fatigue syndrome. Med Hypotheses 54:115–125

    Article  CAS  PubMed  Google Scholar 

  • Pathan AR, Viswanad B, Sonkusare SK, Ramarao P (2006) Chronic administration of pioglitazone attenuates intracerebroventricular streptozotocin induced-memory impairment in rats. Life Sci 79(23):2209–2216

    Article  CAS  PubMed  Google Scholar 

  • Prasad NR, Jeyanthimala K, Ramachandran S (2009) Caffeic acid modulates ultraviolet radiation-B induced oxidative damage in human blood lymphocytes. J Photochem Photobiol B 95(3):196–203

    Article  CAS  PubMed  Google Scholar 

  • Radi R, Rodriguez M, Castro L, Telleri R (1994) Inhibition of mitochondrial electron transport by peroxynitrite. Arch Biochem Biophys 308:89–95

    Article  CAS  PubMed  Google Scholar 

  • Roth KA, Mefford IM, Barchas JD (1982) Epinephrine, norepinephrine, dopamine and serotonin: differential effects of acute and chronic stress on regional brain amines. Brain Res 239(2):417–424

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Kaundal RK, Sharma SS (2009) Amelioration of pulmonary dysfunction and neutrophilic inflammation by PPAR gamma agonist in LPS-exposed guinea pigs. Pulm Pharmacol Ther 22(3):183–189

    Article  CAS  PubMed  Google Scholar 

  • Shimizu J, Nomura S, Hiroko K, Nakazawa T (1984) Effects of water temperature and weight of wheel load on water wheel turning behaviour of imipramine administered mice. Psychopharmacology 84:20–21

    Article  CAS  PubMed  Google Scholar 

  • Short K, McCabe M, Tooley G (2002) Cognitive functioning in chronic fatigue syndrome and the role of depression, anxiety, and fatigue. J Psychosom Res 52(6):475–483

    Article  PubMed  Google Scholar 

  • Singal A, Kaur S, Tirkey N, Chopra K (2005) Green tea extract and catechin ameliorate chronic fatigue-induced oxidative stress in mice. J Med Food 8(1):47–52

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Naidu S, Gupta S, Kulkarni S (2002) Effect of natural and synthetic antioxidants in a mouse model of chronic fatigue syndrome. J Med Food 5(4):211–220

    Article  CAS  PubMed  Google Scholar 

  • Sottocasa GL, Kuylenstierna B, Ernster L, Bergstrand A (1967) An electron-transport system associated with the outer membrane of liver mitochondria: a biochemical and morphological study. J Cell Biol 32:415

    Article  CAS  PubMed  Google Scholar 

  • Sul D, Kim HS, Lee D, Joo SS, Hwang KW, Park SY (2009) Protective effect of caffeic acid against beta-amyloid-induced neurotoxicity by the inhibition of calcium influx and tau phosphorylation. Life Sci 84(9–10):257–262

    Article  CAS  PubMed  Google Scholar 

  • Tadokoro C, Kiuchi Y, Yamazaki Y, Nara K, Oguchi K, Kamijima K (1997) Behavioral stimulation without alteration of b and 5-HT receptors and adenylate cyclase activity in rat brain after chronic sertraline administration. Psychopharmacology 130:124–130

    Article  CAS  PubMed  Google Scholar 

  • Takeda H, Tsuji M, Yamada T, Masuya J, Matsushita K, Tahara M, Iimori M, Matsumiya T (2006) Caffeic acid attenuates the decrease in cortical BDNF mRNA expression induced by exposure to forced swimming stress in mice. Eur J Pharmacol 534(1–3):115–121

    Article  CAS  PubMed  Google Scholar 

  • Vercoulen JH, Hommes OR, Swanink CM, Jongen PJ, Fennis JF, Galama JM, van der Meer JW, Bleijenberg G (1996a) The measurement of fatigue in patients with multiple sclerosis: a multidimensional comparison with patients with chronic fatigue syndrome and healthy subjects. Arch Neurol 53:642–649

    CAS  PubMed  Google Scholar 

  • Vercoulen JH, Swanink CM, Fennis JF, Galama JM, van der Meer JW, Bleijenberg G (1996b) Prognosis in chronic fatigue syndrome: a prospective study of the natural course. J Neurol Neurosurg Psychiatry 60:489–494

    Article  CAS  PubMed  Google Scholar 

  • Vercoulen JH, Swanink CM, Galama JM, Fennis JF, Jongen PJ, Hommes OR, van der Meer JW, Bleijenberg G (1998) The persistence of fatigue in chronic fatigue syndrome and multiple sclerosis: development of a model. J Psychosom Res 45:507–517

    Article  CAS  PubMed  Google Scholar 

  • Watson GS, Cholerton BA, Reger MA, Baker LD, Plymate SR, Asthana S, Fishel MA, Kulstad JJ, Green PS, Cook DG, Kahn SE, Keeling ML, Craft S (2005) Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study. Am J Geriatr Psychiatry 13(11):950–958

    PubMed  Google Scholar 

  • White PD (2000) The role of physical inactivity in the chronic fatigue syndrome. J Psychosom Res 49:283–284

    Article  CAS  PubMed  Google Scholar 

  • Wills ED (1966) Mechanism of lipid peroxide formation in animal tissue. Biochem J 99:667

    CAS  PubMed  Google Scholar 

  • Wong R, Lopaschuk G, Zhu G, Walker D, Catellier D, Burton D, Teo K, Collins-Nakai R, Montague T (1992) Skeletal muscle metabolism in the chronic fatigue syndrome. In vivo assessment by 31P nuclear magnetic resonance spectroscopy. Chest 102(6):1716–1722

    Article  CAS  PubMed  Google Scholar 

  • Zheng ZS, Xue GZ, Grunberger D, Prystowsky JH (1995) Caffeic acid phenethyl ester inhibits proliferation of human keratinocytes and interferes with the EGF regulation of ornithine decarboxylase. Oncol Res 7(9):445–452

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, A., Vashist, A. & Kumar, P. Potential role of pioglitazone, caffeic acid and their combination against fatigue syndrome-induced behavioural, biochemical and mitochondrial alterations in mice. Inflammopharmacol 18, 241–251 (2010). https://doi.org/10.1007/s10787-010-0048-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-010-0048-2

Keywords

Navigation