Skip to main content
Log in

Geometry and Physics Today

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Geometry,” in the sense of the classical differential geometry of smooth manifolds (CDG), is put under scrutiny from the point of view of Abstract Differential Geometry (ADG). We explore potential physical implications of viewing things under the light of ADG, especially matters concerning the “gauge theories” of modern physics, when the latter are viewed (as they are actually regarded currently) as “physical theories of a geometrical character.” Thence, “physical geometry,” in connection with physical laws and the associated with them, within the background spacetime manifoldless context of ADG, “differentialequations, are also being discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auyang, S. Y. (1995). How is Quantum Field Theory Possible? Oxford Univ. Press, Oxford.

    Google Scholar 

  • Baez, J. C. (Ed.) (1994). Knots and Quantum Gravity. Oxford Univ. Press, Oxford.

    MATH  Google Scholar 

  • Bergmann, P. G. (1979). Unitary Field Theory: Geometrization of Physics or Physicalization of Geometry? In “The 1979 Berlin Einstein Symposium.” Lecture Notes in Physics, No 100. Springer-Verlag, pp. 84–88.

  • Bogolubov, N. N., Logunov, A. A. and Todorov, I. T. (1975). Introduction to Axiomatic Quan/-tu/-m Field Theory. W.A. Benjamin, Reading, Mass.

    Google Scholar 

  • Bourbaki, N. (1970). Algèbre, Chap. 1–3. Hermann, Paris.

    Google Scholar 

  • Dugundji, J. (1966). Topology. Allyn and Bacon, Boston.

    MATH  Google Scholar 

  • Feynman, R. P. (1992). The Character of Physical Law. Penguin Books, London.

    Google Scholar 

  • Finkelstein, D. R. (1997). Quantum Relativity. A Synthesis of the Ideas of Einstein and Heisenberg. Springer-Verlag, Berlin (2nd Cor. Print.).

    Google Scholar 

  • Grauert, H. and Remmert, R. (1984). Coherent Analytic Sheaves. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Isham, C. J. (1991). Canonical Groups and the quantization of geometry and topology. In A. Ashtekar and J. Stachel (eds.) “Conceptual Problems of Quantum Gravity.” Birkhäuser, Basel, pp. 351–400.

    Google Scholar 

  • Mallios, A. (1986). Topological Algebras. Selected Topics. North-Holland, Amsterdam. [This item is also quoted, for convenience, throughout the text, by TA].

    MATH  Google Scholar 

  • Mallios, A. (1998a). On an axiomatic treatment of differential geometry via vector sheaves. Applications. Math. Japonica (Int. Plaza) 48, 93–180.

    MathSciNet  MATH  Google Scholar 

  • Mallios, A. (1998b). Geometry of Vector Sheaves. An Axiomatic Approach to Differential Geometry, Vols. I (Chapts I–V), II (Chapts VI–XI). Kluwer, Dordrecht. [This is still quoted in the text, as VS].

    Google Scholar 

  • Mallios, A. (2002). Remarks on “singularities.” gr-qc/0202028.

  • Mallios, A. (2004). On localizing topological algebras. Contemp. Math. 341, 79–95.

    Google Scholar 

  • Mallios, A. (2006) Quantum gravity and “singularities.” Note Mat. 25, 57–76.

    Google Scholar 

  • Mallios, A. (2005). Modern Differential Geometry in Gauge Theories. Vol.I: Maxwell Fields, Vol.II: Yang-Mills Fields. Birkhäuser, Boston, (2005/2006).

  • Mallios, A. and Raptis, I. (2001). Finitary spacetime sheaves of quantum causal sets: Curving quantum causality. Int. J. Theor. Phys. 40, 1885–1928.

    Article  MathSciNet  MATH  Google Scholar 

  • Mallios, A. and Raptis, I. (2002). Finitary vCech-de Rham cohomology: much ado without cc-smoothness. Ibid. 41, 1857–1992.

    MathSciNet  MATH  Google Scholar 

  • Mallios, A. and Raptis, I. (2003). Finitary, causal, and quantal vacuum Einstein gravity. Ibid. 42, 1479–1620.

    MathSciNet  MATH  Google Scholar 

  • Mallios, A. and Raptis, I. (2005). C-smooth singularities exposed: Chimeras of the differential spacetime manifold, research monograph (in preparation); gr-qc/0411121.

  • Mallios, A. and Rosinger, E. E. (1999). Abstract differential geometry, differential algebras of generalized functions, and de Rham cohomology. Acta Appl. Math. 55, 231–250.

    Article  MathSciNet  MATH  Google Scholar 

  • Mallios, A. and Rosinger, E. E. (2001). Space-time foam dense singularities and de Rham cohomology. ibid. 67, 59–89.

    MathSciNet  MATH  Google Scholar 

  • Manin, Yu. I. (1981). Mathematics and Physics. Birkhäuser, Boston.

    Google Scholar 

  • Papatriantafillou, M. H. (2000). The category of differential triads. Bull. Greek Math. Soc. 44, 129–141.

    MathSciNet  MATH  Google Scholar 

  • Papatriantafillou, M. H. (2004). Initial and final differential structures in Proc. Intern. Conf. on “Topological Algebras and Applications” (ICTAA 2000), Rabat, Maroc. école Normale Supérieure, Takaddoum, Rabat, pp. 115–123.

  • Papatriantafillou, M. H. (in preparation) Abstract Differential Geometry. A Categorical Perspective (book).

  • Raptis, I. (2000). Finitary spacetime sheaves. Int. J. Theor. Phys. 39, 1703–1716.

    Article  MathSciNet  MATH  Google Scholar 

  • Rosinger, E. E. (1990) Non-Linear Partial Differential Equations. An Algebraic View of Generalized Solutions. North-Holland, Amsterdam.

    Google Scholar 

  • Sharpe, R. W. (1997). Differential Geomerty. Cartan's Generalization of Klein's Erlangen Program. Springer–Verlag, New York.

    Google Scholar 

  • Smith, D. E. (1958). History of Mathematics, Vol. I. Dover Publications, New York.

    Google Scholar 

  • Sorkin, R. D. (1991). Finitary substitute for continuous topology. Int. J. Theor. Phys. 30, 923–947.

    Article  MathSciNet  MATH  Google Scholar 

  • Stachel, J. (1993). The other Einstein: Einstein contra field theory in M. Beller, R. S. Cohen, and J. Renn (eds.) “Einstein in Context”: Science in Context 6, 275–290. Cambridge Univ. Press, Cambridge, 1993.

    Google Scholar 

  • Weinstein, A. (1981). Symplectic geometry. Bull. Amer. Math. Soc. 5, 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  • Weyl, H. (1949). Philosophy of Mathematics and Natural Sciences. Princeton Univ. Press, Princeton, N.J.

    Google Scholar 

  • Weyl, H. (1952). Space-Time-Matter. Dover Publications, New York.

    Google Scholar 

  • Wittgenstein, L. (1997). Tractatus Logico-Philosophicus. Routledge, London.

    Google Scholar 

  • Wittgenstein, L. (2003). Remarks on Aesthetics, Psychology and Religious Belief. Blackwell, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios Mallios.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallios, A. Geometry and Physics Today. Int J Theor Phys 45, 1552–1588 (2006). https://doi.org/10.1007/s10773-006-9130-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-006-9130-3

KEY WORDS:

Navigation